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Preface
Every mathematician knows that it is impossible to understand any elementary course
in thermodynamics.
Vladimir Arnol'd

This thesis began when I encountered the phenomenon mentioned by Arnol'd above. I was
taking a course in statistical mechanics from my adviser Wioletta Ruszel, when I realized that I
didn't understand the elementary thermodynamics that the authors of the statistical mechanics
textbook assumed as background intuition. This lead me on a quest to formulate some of the most
basic assumptions of elementary thermodynamics in a formal way, so that even a mathematician
could understand. Moreover, I wished to put thermodynamics on a categorical footing, so as to talk
about the composition of thermodynamical systems. I had been thinking about this casually for
some time when I happened to spend several weeks in the summer of 2021 at the Topos Institute at
the same time as John Baez was visiting. It turned out that he had similar intentions and interests
with regards to thermodynamics, as did several other people at Topos, and we all started talking
about the subject.

Eventually, this turned into a collaboration between John Baez, his student Joe Moeller, and
me, and we wrote a paper on what we called �thermostatics�. In this paper, we derived many
features of thermodynamical equilibrium from some basic assumptions about entropy functions [1].
However, this was just a beginning, and to keep investigating thermodynamics I asked John Baez
if he would like to advise my thesis, which would be a continuation of the work.

For my thesis, I wanted to understand open thermodynamical systems, that is thermodynamical
systems that could take flows of energy, heat, volume, and particles from the outside world. I was
(and still am) very interested in the idea that a open system can seemingly violate the second law
of thermodynamics, spontaneously becoming more ordered and complex by continually expelling
waste heat. Two works along these lines that particularly spoke to me were Haddad's A Dynamical
Systems Theory of Thermodynamics [2], which forefronted flows of heat as the basic unit of study,
and Schnakenberg's Thermodynamical Network Analysis of Biological Systems [3], which talked
about some of the phenomena that could happen in open systems, like active transport. For my
final paper in a mathematical biology class, I wrote about Schnakenberg, and learned about bond
graphs, which were a notation that Schnakenberg used to analyze his thermodynamic systems.
I deliberately left out all mention of category theory from this paper, as it was a mathematical
biology class, but studying Schnakenberg made me convinced that taking seriously the view of
flows of energy that I had found within bond graphs could lead to a good compositional theory of
thermodynamic systems for my thesis.

It was this line of thinking that lead me to stumble upon the rich theory of port-Hamiltonian
systems, and I started reading many papers written by van der Schaft and collaborators. The
theory of port-Hamiltonian systems was already quite well-developed, including the theory of
how to compose port-Hamiltonian systems. However, there was not yet a comprehensive account
of how category theory could be used to structure this composition, and so I sensed an area to
which I could make a contribution. This thesis is my attempt to put the composition of port-
Hamiltonian systems on a firm categorical footing. Although constraints of time have prevented
me from discussing nonequilibrium thermodynamics proper, and my thesis is split between equilib-
rium thermodynamics and non-equilibrium reversible systems, it is my hope that the techniques,
philosophy, and results established here will lay the groundwork for a deeper understanding of
open systems in thermodynamics, and additionally perhaps the groundwork for compositional
computational simulation of thermodynamical systems for purposes of engineering and control.

Finally, a thesis is a wonderful opportunity not just to expand the frontiers of human knowledge,
but also to invite others on the journey to places farther out. Thus, I hope to share with the reader
some of the perspective that I have gained while studying this material, and to bring the reader up
to date with some of the exciting developments in applied category theory that are the �shoulders
of giants� on which I stand.
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Notation

We use different fonts to signify various meanings in this thesis. Bold font is always used for terms
that are being defined rigorously for the first time. Italics is used for emphasis, but also for terms
that we are referring to before they are rigorously defined. This is so that the reader need not
worry they have missed something if it is in italics; it will be defined in due time.

Within math, we use sans serif for the names of categories and serif font for the names of
functors.
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1. Introduction

1.1. Relations and behaviors

We view a mathematical model as an exclusion law. A mathematical model expresses
the opinion that some things can happen, are possible, while others cannot, are
declared impossible. Thus Kepler claims that planetary orbits that do not satisfy
his three famous laws are impossible. In particular, he judges nonelliptical orbits
as unphysical. The second law of thermodynamics limits the transformation of heat
into mechanical work. Certain combinations of heat, work, and temperature histo-
ries are declared to be impossible. Economic production functions tell us that certain
amounts of raw materials, capital, and labor are needed in order to manufacture
a finished product: it prohibits the creation of finished products unless the required
resources are available.

J.W. Polderman and J.C. Willems, Introduction to Mathematical Systems Theory, [4]

This thesis is the product of many different intellectual traditions. One of the most promi-
nent, however, is the philosophy that physical systems should be understood not as input-output
machines, but rather as objects that have a collection of allowed behaviors. Composition of systems
constrains their joint behavior. This is a philosophy that Jan Willems was particularly famous for,
and is exposited in many of his works, but particularly in The Behavioral Approach to Open and
Interconnected Systems [5].

In this thesis, there is a great deal of math, and a specifically a great deal of category theory.
But fundamentally, the goal can be stated quite simply: to rigorously develop the Willems point
of view. This is obviously a massive undertaking, and thus we narrow our scope to two areas. The
first is the area of port-Hamiltonian systems, which, roughly speaking, are dynamical systems that
have a notion of energy conservation. The second is the area of thermostatic systems, which is a
formalization of thermodynamics that only considers equilibrium.

Without yet getting into any of the math, we present the basic ontology that we use to model
systems in this way, pictured in Figure 1.1.

constrain

have

relate

compose

Systems Behaviors

Interfaces

Links

Figure 1.1. The ontology of relational composition.

As seen in the figure, our ontology consists of four parts.

1. The central concept is systems. In a traditional modeling framework, this would be the
only concept. These are models of physical phenomena.

2. Systems constrain behaviors. In the dynamical setting, these are maps from a time interval
to a state space, in the equilibrium setting these are simply elements of a state space. A
system only allows certain behaviors.

3. Systems have interfaces. Systems interact with other systems through their interfaces,
and interfaces allow us to �black box� systems so that all we care about is how they relate
to their interface.
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4. Links relate interfaces, and by relating interfaces, allow the composition of systems. In
other words, links mediate how systems interact with one another through their interfaces.

This ontology draws not only from Willems, but also from a variety of sources (some of which were
probably themselves inspired by Willems). These sources have provided formalizations for various
terms in our ontology.

For instance, there is a thread of research into categorical formalization and application of linear
relations that has greatly influenced our treatment of interfaces and links. This thread includes
Baez and Erbele [6], Fong [7], and Coya [8].

Our philosophy on the composition of systems via operad algebras that allows us to formalize
the statement that �links compose systems�, comes mainly from Libkind et al. [9], which itself
draws from a long history of using operad algebras to compose systems starting with Spivak [10].
And of course, we also have learned something of this from writing our own paper [1].

A third thread about how to think about behaviors, and specifically time-dependent behaviors,
comes from �the Davids� (i.e. Spivak and Myers), and Fong, from [11], [12], and [13], though this
thread is unfortunately not covered very much here.

Finally, the meat of this thesis comes from the theory of port-Hamiltonian systems, and this is
the source of our �systems�. We are indebted to the excellent book written by van der Schaft and
Jelsema [14] for our understanding of this subject, and in more generality, to the work of van der
Schaft, which has gone much farther than this thesis in many directions, including with respect
to thermodynamics, and we hope to catch up to this with the category theory eventually. Port-
Hamiltonian systems themselves have an illustrious history reaching back in many directions. We
encourage the interested reader to read the introduction to [14] for more details.

The work in this thesis is mainly that of integration. This integration is not easy, especially
when each thread requires a good deal of background material to get started. Therefore, in the
introduction, we aim to give a preview of the �punchline� of each of the two main areas that we
cover: port-Hamiltonian systems and thermostatics, to intrigue the reader and motivate them to
plow through the background material. The next two sections are devoted to doing this. In the
last section of the introduction, we give an overview of the structure of the rest of the thesis.

1.2. Power is the product of effort and flow

The �punchline� of port-Hamiltonian systems has to do with power, effort and flow, and this can
all be explained in a fairly elementary way.

Suppose that a physical system has phase space Rn and H:Rn!R is a smooth function that
gives the energy of each point in the state space. Moreover, suppose that : I!Rn is a path of
the physical system through time. Then an application of the chain rule gives

d
dt
H((t))=rH((t)) �  0(t)

Although this is a simple trick of calculus, we would like to tell a story about this equation that
give it more physical meaning. We start by giving examples.

Example 1.1. Consider a capacitor, which has phase space R with coordinate q giving the charge
on a plate. Then the energyH is given by H(q)= 1

2C
q2, where C is the capacitance of the capacitor.

If q= q(t) is a function of time, then the formula for the derivative of H is given by

H_ = 1
C
q q_

The right hand side of this equation is very familiar: V = 1

C
q is the voltage across the capacitor,

and I = q_ is the current flowing into the capacitor. We can thus write

H_ =V I
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That is, the change in the energy of the capacitor is given by the product of the voltage across it
and current flowing into it.

We call these two parts of the expression for the derivative of energy �effort� and �flow�: effort
is the gradient of the energy function and flow is the derivative of the state function. In this case,
voltage takes the role of effort, and current takes the role of flow.

(a) Traditional (b) Dirac diagrams

Figure 1.2. Capacitors

In Figure 1.2, we see a capacitor drawn in a traditional style, as well as in the style of Dirac
diagrams (original to this thesis). We eventually discuss Dirac diagrams more formally, but for
now the reader should parse this diagram as a �system� (red box) with a �power port� that has an
effort part (green) and a flow part (blue), which happen to represent voltage and current here.
(However, green and blue are not always be voltage and current; in general they represent any pair
of quantities whose product is power).

There are many physical systems that are expressed mathematically in the exact same way
as a capacitor; see Table 1.1 for some examples. Note that for the systems that can be multi-
dimensional (i.e. the particle or the gyroscope), here we are just considering the 1-dimensional
variant (a particle constrained to a line or a gyroscope that can only spin on a single axis).

System State variable Constant Effort Flow
Capacitor Charge (q) Capacitance (C) Voltage (V = 1

C
q) Current (I = q_)

Lin. Spring Length (x) Complicance (C) Force (F = 1

C
x) Velocity (v=x_)

Coil Spring Rotation (�) Ang. Compliance (C) Torque (� = 1

C
�) Ang. vel. (!= �_)

Inductor Magnetix flux (�B) Inductance (L) Current (I = 1

L
�B) Voltage (V =�_B)

Particle Momentum (p) Mass (m) Velocity
¡
v= 1

m
p
�

Force (F = p_)

Gyroscope Ang. mmtm. (L) Moment of Inertia (I) Ang. vel. (!= 1

I
L) Torque (� =L_ )

Table 1.1. Systems analogous to capacitors

One confusing thing about Table 1.1 is that in the context of a capacitor, we call voltage effort
and current flow, but in the context of an inductor, we call voltage flow and current effort. This
is similar to the phenomenon where if Mr. A is standing face-to-face with Ms. B, Mr. A will call
�right� the direction that Ms. B calls �left�. In theater, this problem is dealt with by making left
and right into immutable directions: �stage-left� and �stage-right�, which are left and right from the
perspective of an actor on the stage facing the audience. In the context of bond graphs, which is
where this effort and flow terminology comes from, there is a similar convention, where effort and
flow are fixed to the �point of view� of a given system in each domain.

The fact that there isn't a natural choice for which quantity to be �effort� and which quantity
to be �flow� in each domain is related to the �Firestone analogy� in electrical circuits, which shows
that there is more than one way of analogizing electrical circuits to mechanical systems [15].

The �canonical systems� for the electrical, linear mechanical, and rotational mechanical domains
respectively are the capacitor, the linear spring, and the coil spring. The conventions for a variety
of domains is listed in Table 1.2.
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Domain Effort Flow
Electrical Voltage Current

Linear Mechanical Force Velocity
Rotational Mechanical Torque Angular Velocity

Hydraulic Pressure Volume flow
Thermal Temperature Entropy flow
Chemical Chemical potential Mass flow

Table 1.2. Effort and flow in various domains

Example 1.2. Consider a free particle of mass m traveling in R3. The phase space for this particle
is R3�R3 (position and momentum), and the energy function is H(q; p)= 1

2m
kpk2. If we are only

interested in changes of momentum, we can throw away the position, and end up with a phase
space of R3 and an energy function of H(p)= 1

2m
kpk2. Now, suppose that p is a function of time.

We end up with the equation

H_ = 1
m
p � p_

We can identify 1

m
p with the velocity v of this system, and by Newton's second law, F = q_. Thus,

we can rewrite this equation as

H_ = v �F

One way to think about this is that the velocity of a particle measures the resistance of the particle
to adding more momentum: it takes more energy to add momentum to something that is already
going fast.

When we move to the multidimensional setting, a funny thing happens: we can have non-zero
velocity and non-zero force, but still no net-power! This is the case when you have a pendulum:
the rod of the pendulum exerts force on the mass attached to the pendulum, but this force does
no work on the mass (although gravity still does work on the mass).

In the previous two examples, the effort changed based on the state of the system. But this
does not always need to be the case.

Example 1.3. One can design a �gravitational battery� that stores energy by lifting a bunch of
bricks with a crane, and releases energy by letting them fall back to the ground. The state variable
here is the height of the bricks, and the energy stored is given by H(h) =mg h, where m is the
mass of the bricks and g is the gravity on Earth. Then the flow is v=h_ , the velocity that the crane
is lifting at, and the effort is simply F =mg.

Finally, classical thermodynamics can also be thought about in this framework of efforts and
flows.

Example 1.4. Consider an ideal gas. The fundamental thermodynamic equation is typically
written as

dU =T dS ¡P dV + �dN

where U is energy, T is temperature, S is entropy, P is pressure, V is volume, � is chemical
potential, and N is particle number. If U ; T ; S; P ; V ; �;N are given as functions of time, we can
rewrite this as

U_ = (T ;¡P ; �) � (S_ ; V_ ; N_ )

which is of the same form as our earlier examples. Thus, we see that in thermodynamics, intensive
variables show up as efforts and the derivatives of extensive variables show up as flows.
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In all of the previous examples, we have considered efforts and flow as they relate to energy
functions. However, efforts and flows can exist independently of energy functions, as in the next
example.

Example 1.5. Consider a network of ideal wires with a collection P of inputs and a collection Q
of outputs. Let 'P ; IP 2RP be the potentials and currents assigned to the inputs, and 'Q; IQ2RQ

be the potentials and currents assigned to the outputs. Then because no power is lost from current
flowing across ideal wires, these potentials and currents must satisfy

'P � IP = 'Q � IQ

Example 1.6. Consider a frictionless pulley system that multiplies the distance pulled by �. Then
if vin and vout are the velocities of the input and output rope respectively, and Fin and Fout are
the forces applied to these ropes, we have vout=�vin and Fin=�Fout, so that

Fin vin=Fout vout

It is the work of this thesis to describe a framework in which all of these examples can be
discussed formally.

1.3. Equilibrium via entropy maximization

The other ground-level subject in this thesis is what we call �thermostatics�; the study of the
equilibria of thermodynamical systems. Classically, the first two laws of thermodynamics are

1. Energy is conserved

2. Entropy never decreases

These laws are by no means rigorous, but way of introduction to thermostatics, let us investigate
how these laws apply to a very simple scenario. Suppose two thermal bodies are allowed to exchange
thermal energy with each other, but are insulated from the environment. For instance, suppose one
were to put a hot pie and cold ice cream in an insulated cooler. What might one suppose should
happen?

Thermodynamically, each body is described by an energy Ui, a temperature Ti, and an entropy
Si, where Si is a differentiable function of Ui and

1
Ti

= @Si
@Ui

A very simple choice for the function Si is

Si(Ui)=Ci logUi

This is because it leads to the equation

CiTi=Ui

which describes a system with a constant heat capacity Ci; each unit of temperature increase
requires Ci units of energy.

Now that we have the basic setup, let us apply the first and second laws. The first law, combined
with the assumption that this system is insulated, implies that the total energy U1+U2 should not
change. Thus, we can only move within the solutions to the equation U1+U2=U for some fixed
U . The second law implies that the total entropy S1(U1)+S2(U2) must never decrease. Given this
constraint, we can imagine that the total entropy increases until it hits a local maximum, and then
that is the equilibrium.

Now, in fact S1(U1)+S2(U2) is a concave function, so local maximums are global maximums.
Thus, we might reasonable assume that the equilbrium is at the global maximum of entropy, with
respect to the constraint that energy remains conserved. Let us find this maximum.
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This system only has one degree of freedom because of the U1+U2=U constraint. Thus, we
reparameterize it with U2=U ¡U1, and we get

Stot(U1)=S1(U1)+S2(U ¡U1)

We now set the derivative of this to 0 in order to find the local maximum, and we get

S1
0(U1)¡S20(U ¡U1)=0

We can rewrite this as
@S1
@U1

= @S2
@U2

Then, using our equation from before, we find

1
T1
= 1
T2

Thus, at the point of equilibrium, the two temperatures are equal to each other. This is precisely
what we would expect; we would expect that after a long time, the ice cream and the pie would
roughly come to the same temperature. Note that this is true for any concave differentiable func-
tions Si; we have not used our assumption that heat capacity is constant yet.

Now, suppose that we considered both thermal bodies as a single system, for instance by
assuming that the time that it takes for the thermal bodies to come to equilibrium with each other
is small compared to the time it takes for them to come to equilibrium with external systems. Then,
we can parameterize the thermal bodies by their total energy U . It then turns out that we can
write down an explicit form for their entropy (when at equilibrium with each other) as a function
of U , and it is

S(U)= (C1+C2) logU +K

where K is a constant not depending on U . Thus, the two bodies together act as a single body
with heat capacity C1+C2, which is also quite intuitive.

Let us now look over what we have done in this section, and see if we can extract a general
pattern. We started by defining state variables for each system, which in this case were just energy.
Then we wrote down entropy for each of these systems as a function of the state variables. Built-
in to the entropy function were constants parameterizing the system (i.e. heat capacity). Then the
entropy function captured the relationship between the state variables and other variables of the
system (i.e. temperature), via the derivative of the entropy function.

We then wrote down a constraint on the systems, derived from a conservation law . This time
we used conservation of energy, but we could also have more constraints based on conservation
of matter, or conservation of other quantities. Once we did this, we could derive the equilibria
by maximizing entropy with respect to the constraints. Finally, we used all of this setup to think
about the composed system made out of parts that had equilibriated with eachother.

We formalize this whole process that we have just outlined, using a similar categorical method to
port-Hamiltonian systems. Along the way, we also find that our process applies to more than just
traditional classical thermodynamical systems, and we end up with a framework where classical,
statistical, and quantum systems can all live under the same roof.

As of yet, we do not have a direct connection between the port-Hamiltonian systems and the
thermostatic systems. However, we hope that presenting both illustrates that our categorical
approach is quite broad, and thus can be lifted to many different types of systems. And hopefully
the similarity of the approaches will make it possible for one day a connection to be found.

1.4. Overview

As said before, the last part of this introduction lays out the structure of this thesis, and serves as
a guide for what is to come. The basic structure is given in Figure 1.3.
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Introduction

Categories for Systems

Categorical Linear Algebra

Dirac Relations

Categorical Differential Geometry

Port Hamiltonian Systems

Convex Spaces

Operads

Composition of Port Hamiltonian Systems

Thermostatics

Figure 1.3. Dependencies between the chapters of the thesis. Dotted arrows mean that a chapter uses
another chapter for examples, but not for the main logical development.

After this introduction, we start with Chapter 2, which is more or less pure category theory. In
this chaper, we cover the principle of equivalence, monoidal category theory, and regular category
theory. This chapter forms the basis for all that is to come in the thesis, and is purely review.

We then go on in Chapter 3 to cover linear algebra from a categorical viewpoint. There is a lot
of rich structure in linear algebra that can be treated categorically; the category of vector spaces
admits two interesting monoidal structures (direct product and tensor product), and additionally
the category of linear relations is well-treated by category theory. Later on in the thesis, there
are several categories that in spirit are quite similar to the category of linear relations, so this is a
useful (and simple) preview. This chapter is likewise review.

In Chapter 4, we start treating some new material. Specifically, we introduce �Dirac relations�,
which formalize the idea of power-preserving interconnection. We also introduce �Dirac diagrams�,
which are a convenient and mnemonic way of picturing Dirac relations. We use Dirac diagrams
and Dirac relations in order to compose our physical systems, in Chapter 8.

Next, Chapter 5 takes the material from Chapter 3 and 4 and �lifts� it to now be talking about
vector bundles over manifolds. This is an essential generalization for the development of categorical
port-Hamiltonian systems. For this �lifting� we use a theory of smooth functors, which is a neat
construction of general interest. Most of this material is not original to this thesis, but the last
section which lifts Dirac relations is original.

In Chapter 6, we get to port-Hamiltonian systems. We start with a review of classical mechanics,
using Poisson manifolds, and then show how this classical mechanics viewpoint generalizes to port-
Hamiltonian systems. Most of this material is known, but we also discuss morphisms between port-
Hamiltonian systems, which to our knowledge is a concept original to this thesis.
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Chapter 7 takes a break from the development of port-Hamiltonian systems and goes back to
category theory; the only official prerequisite for this chapter is Chapter 2. This chapter introduces
our formalism for composing systems: operads and their algebras. We use the operad of undirected
wiring diagrams as an example, and also show how to make operads of Dirac relations. However,
knowledge of Dirac relations is not necessary for this chapter, as they are used only in the examples.
This chapter is wholly review of known material.

Finally, in Chapter 8, we prove that port-Hamiltonian system form an operad algebra of the
operad of Dirac relations. This is the big result of this thesis, and is quite technical (though not at
all surprising, and not too difficult). After proving this, we give examples of using it to compose
port-Hamiltonian systems.

The rest of the thesis applies similar methods to thermostatic systems. This material appeared
earlier in Baez, Lynch and Moeller [1], and so here we present a condensed version, with the proofs
omitted. Our hope is that this version shows the essential simplicity of the thermostatic approach,
and also demonstrates the versatility of the operadic framework. Chapter 9 does a fairly standalone
treatment of convex spaces, which are the state spaces of thermostatic systems. Then Chapter 10
presents the operad algebra of thermostatic systems, along with several examples. Most of this
material was already covered in [1], but our treatment of chemical reactions is novel to this thesis.

There are two broad �tracks� through this thesis. The first is the �port-Hamiltonian track.� This
track goes straight through from Chapter 2 to Chapter 8. The second is the �thermostatics track.�
This track is shorter, and goes 2, 9, 7, 10.

However, the �logical� path through the material is not always the most intuitive. The reader
with strong grasp of differential geometry might skip directly to Chapter 6 to get an idea of what
a port-Hamiltonian system is, before returning to Chapter 2 and doing the material in order.
Additionally, it might make sense to look at some of Chapter 3 before doing Chapter 2.

We close the introduction by stressing that the core of this thesis is simply the juxtaposition
of several well-understood theories, as discused in Section 1.1. Thus, we hope that the reader will
take this thesis as an invitation to open the door for themselves, read the literature that we have
drawn from, and apply these methods to their own favorite subject. It is perhaps not easy, but we
believe that the fruit of these methods has just begun to be picked.

2. Categories for Systems

2.1. Principle of equivalence
Several considerable paradoxes follow from this, amongst others that it is never true
that two substances are entirely alike, differing only in being two rather than one.
G.W. Leibniz, Discourse on Metaphysics, 1686, [16]

In folklore we find the following witty slogan: if there is a contradiction between
physics and logic, you must change the logic.
René Lavendhomme, Basic Concepts of Synthetic Differential Geometry, 1996, [17]

The task of the mathematical physicist is to take what is intuitively obvious to physicists and
render it rigorously clear to mathematicians. In this quest, the study of logic can be a great boon,
providing a foundation of rock on which to build houses. However, sometimes it is necessary to
remember that the physics must come first.

For instance, for a great many purposes, physicists found it useful to work with Dirac deltas
and their ilk. The onus is then on the mathematician to loosen their definition of function as a
simple map of sets and invent new theories to deal with this problem, such as measure theory,
distribution theory, and Fourier theory. Of course, this can still be accomplished within classical
foundations, but the point is that the fact that �function� is defined in a certain way within classical
foundations does not mean that people who use function in a different way are wrong. A more
thorough account of this story can be found in Jaynes [18, Appendix B].

Leibniz's �Identity of Indiscernibles�, part of which is quoted above, states that two things
which have all of the same properties in common are in fact one thing [19]. In mathematics, we
use this idea when we use the definite article �the� to refer to �the real numbers.� In set theory,
there are any number of different sets which could be used for R, and yet this fact never matters
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in the practice of mathematics. This is because the �properties� of all of these sets are the same.
The rest of this section is devoted to discussion and formalization of this idea. This may seem like
an embarrasing triviality, but as we delve into the categorical structures needed later on in this
thesis a firm grasp on this bit of philosophy is very helpful.

The mathematical history of this formalization is long and illustrous; we can see that the idea
goes all the way back to Leibniz. Tracking the entire story is beyond the scope of this section,
but some modern takes on the subject are found in Awodey [20] and Coquand [21]. The author's
thinking on this matter was particularly influenced by Riehl's talk [22], and more generally the
homotopy type theory project [23].

Formalization of the identity of indiscernibles hinges on the question of what �property� means
in mathematics? In set theory, there is a very specifc form of identity of indiscernibles which says
that if two sets have all of their elements in common, then they are equal. However, this is no good:
we could have two sets that had no elements in common, but each could serve just fine as R. In
set theory, we also have a concept of bijection. But this is also no good: R and C have a bijection
because they are of the same cardinality, yet intuitively these sets have quite different properties!

The answer is that we must specify which properties we care about, and only consider bijections
that preserve these properties. For instance, the reals are a complete ordered field, and we can
show that there is a canonical field isomorphism between any two complete ordered fields [24]. This
notion of �isomorphism� is saying that all the relevant properties of two objects are the same.

The process of taking this answer seriously leads to category theory. Of necessity, we assume
that the reader has had some exposure to category theory before, as a full tutorial on category
theory is beyond the scope of this thesis. Works that the reader might consult for introduction
to the subject include Leinster [25], Riehl [26] and Maclane [27]. However, we reserve the right to
refresh the reader's memory on certain definitions for the sake of pedagogy.

Definition 2.1. Two objects X; Y in a category C are said to be isomorphic if there exists f :
X!Y, g:Y !X such that 1X= g � f and 1Y = f � g

In mathematics, we generally hold the following opinion.

Principle of Equivalence. All mathematical constructions should be invariant under isomor-
phism in the relevant category. That is, we should not notice if someone were to replace all of
our objects with isomorphic objects.

However, when we try to apply the principle of equivalence to categories themselves, we end up
with something that breaks the principle of equivalence! That is, when we assert that G�F =1C
for functors F : C!D and G:D! C, we are asserting that G(F (X)) =X, which is not invariant
under isomorphism. Thus, we make the following definition.

Definition 2.2. An equivalence of categories C and D consists of

1. A pair of functors F :C!D, G:D!C

2. A pair of natural isomorphisms 1C=�G �F, 1D=�F �G

We then rephrase the principle of equivalence.

Categorified Principle of Equivalence. All categorical constructions should be invariant
under equivalence of categories. That is, we should not notice if someone were to replace all of
our categories with equivalent categories.

Equivalence can be surprisingly weak. Let C be the category with one object and one morphism
(the identity), and let D be a category with 2N objects, but precisely one morphism between any two
(these morphisms are then isomorphisms). Then C and D are equivalent. We say that a category
is contractible if it is equivalent to the one object, one morphism category.

Example 2.3. The subcategory of the category of fields consisting of all complete, ordered fields
is contractible.

If a category is contractible, according to the principle of equivalence, we might as well treat it
like it has one object. This leads to the following interpretation of Leibniz' Identity of Indiscernibles
principle.
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Identity of Indiscernibles. The English phrase �the object with property P � is understood to
mean in a mathematical context that the category of objects that satisfy property P along with
P -preserving morphisms is contractible.

Example 2.4. If C is category, then we say that 1 is a terminal object of C if for all X 2 C,
there exists a unique map f :X! 1. Then the subcategory consisting of all terminal objects of
C is contractible, because there is a unique map between any two terminal objects. Thus, we are
justified by identity of indiscernibles in saying �the� terminal object.

The same can be said for initial objects, 0 is an initial object of C if for all X 2C there exists
a unique map f : 0!X. The subcategory of initial objects is contractible, so we say �the� initial
object.

The subtle part of this definition is the idea that not only are all of the objects isomorphic
but also they are canonically isomorphic; i.e. we have exactly one isomorphism between any two
objects. It would sound strange to say �the vector space of dimension n� because given two such
vector spaces, there is not a canonical isomorphism between them. However, it is natural to say
�the vector space Rn�, because Rn comes with a canonical ordered basis, so any two instances of
Rn are canonically isomorphic.

Finally, note that we do not take this as dogmatic. If it is convenient to use a stricter form of
equality than isomorphism, we do not hesitate to do so. It is just that we must be aware that strict
equality should not necessarily be the default. Full application of the principle of equivalence takes
us down a long road whose end is as of yet unknown, though many have travelled along it much
farther than we do here and found a wide variety of interesting topics; see [23].

2.2. Monoidal categories
Monoidal categories are a foundational object in category theory and especially applied category
theory. They were introduced independently in 1963 by Benabou [28] and Maclane [29]. Prominent
early uses in applied category theory are [30] and [6], both of which are excellent introductions to
the subject that the reader is encouraged to refer to as a complement to this section.

This section rigorously defines what a monoidal category is. However, the reader is encouraged
to skip back and forth between this section and section 2.3 to develop intuition on how to think
about monoidal categories.

Monoidal categories are a categorification of monoids [31]. Roughly speaking, categorification
refers to the process of taking a definition with sets, and replacing the sets with categories. So we
start our introduction to monoidal categories by reviewing what a monoid is.

Definition 2.5. A monoid consists of

� a set M
� a function �:M �M!M

� an element e2M
such that

� �(a; �(b; c))= �(�(a; b); c) for all a; b; c2M
� �(e; a)= a= �(a; e) for all a2M

The most straightforward way of categorifying this is a strict monoidal category.

Definition 2.6. A strict monoidal category consist of
� a category C

� a functor 
:C�C!C

� an object I 2C
such that
� ¡
(¡
¡)= (¡
¡)
¡ as functors. That is, for all objects X;Y ; Z 2C0,

X 
 (Y 
Z)= (X 
Y )
Z

and for all morphisms f :X!X 0, g:Y !Y 0, h:Z!Z 0

f 
 (g
h)= (f 
 g)
h
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� (¡
I)= (¡)= (I 
¡) as functors. That is, for all objects X 2C0,
X 
 I =X = I 
X

and for all morphisms f :X!X 0

f 
 1I= f =1I 
 f

There are also additional laws �hidden� in the functorality of 
, namely the fact that for

X1!!!!!!!!!!!!!!!!
f1

Y1!!!!!!!!!!!!!!!!
g1

Z1; X2!!!!!!!!!!!!!!!!
f2

Y2!!!!!!!!!!!!!!!!
g2

Z2

we have
(g1
 g2) � (f1
 f2)= (g1 � f1)
 (g2 � f2):X1
X2!Z1
Z2

and additionally
1X1
 1X2=1X1
X2

Example 2.7. Let N be the category where the objects are natural numbers, and where a
morphism f 2HomN(m; n) is a function f : f1; : : : ; mg! f1; : : : ; ng. (A category theorist might
know this as the skeleton of FinSet). Then (N;+; 0) forms a monoidal category, where f + g:
m1+m2!n1+n2 is defined by

(f + g)(k)=
�
f(k) if k �m1

g(k¡m1)+n1 if k >m1

An example of this monoidal composition of morphisms is pictured in Figure 2.1.

+ =

2

2

1

2

4 3

Figure 2.1. Picturing Monoidal Composition in N

Example 2.8. Let N2=N�N be the category where the objects are tuples (n1; n2), and a
morphism f 2HomN2((m1;m2); (n1; n2)) is a tuple (f1:n1!m1; f2:n2!m2).

We can think of this as a �two-colored� version of Example 2.7, as is pictured in Figure 2.2.

+ =

(2,0)

(1,1)

(1,0)

(1,1)

(3,1)
(2,1)

Figure 2.2. Picturing Monoidal Composition in N2

This can be generalized to NS, where S is a category and NS is the category of functors F :
S!N. These categories are useful for modeling a variety of data structures, see [32] for details.

Example 2.9. If C is any category, then let End(C) be the category where the objects are functors
F :C!C and the morphisms are natural transformations �:F)G. Then (End(C);�;1C) is a strict
monoidal category.

Although strict monoidal categories are convenient (especially for computation), they violate
the principle of equivalence by requiring that X 
 (Y 
Z)= (X 
Y )
Z; in accordance with the
principle of equivalence we should instead have X 
 (Y 
Z)=� (X 
Y )
Z. For instance, if

X �Y = f(x; y) jx2X; y 2Y g

then set-theoretically we do not have X � (Y �Z) = (X � Y )�Z. However there is a canonical
isomorphism X � (Y �Z)=� (X �Y )�Z.
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Moreover, if (C;
; I) is a strict monoidal category, and C is equivalent to another category D,
then D is not necessarily given a strict monoidal structure by this equivalence. Rather, D is given
what we call a monoidal structure, defined as follows. In other words, monoidal structures are the
generalization of strict monoidal structures that are invariant under equivalence of categories.

Definition 2.10. A monoidal category is a triple (C; 
; I) of a category C, a functor 
:
C�C!C, and an object I 2C0, along with a natural isomorphism called the associator

aX;Y ;Z: (X 
Y )
Z!!!!!!!!!!!!!!
�

X 
 (Y 
Z)

and two natural isomorphisms
lX: I 
X!!!!!!!!!!!!!!

�
X

rX:X 
 I!!!!!!!!!!!!!!
�

X

called left and right unitors, such that the following coherence conditions hold:

� for all X;Y 2C the triangle equation:

(X ⊗ I)⊗ Y X ⊗ (I ⊗ Y )

X ⊗ Y

aX,I,Y

rX⊗1Y 1X⊗lY

� for all W ;X; Y ; Z 2C the pentagon equation:

((W ⊗X)⊗ Y )⊗ Z

(W ⊗ (X ⊗ Y ))⊗ Z

(W ⊗X)⊗ (Y ⊗ Z)

W ⊗ ((X ⊗ Y )⊗ Z)

W ⊗ (X ⊗ (Y ⊗ Z))

aW⊗X,Y,Z

aW,X,Y ⊗Z

aW,X,Y ⊗1Z

aW,X⊗Y,Z

1W⊗aX,Y,Z

These coherence conditions can look intimidating at first. However, essentially what they are
doing is providing sufficient conditions for:

� All of the parenthizations of X1
 � � � 
Xn to be canonically isomorphic. This allows us to
speak of �the� object X1
 � � � 
Xn.

� Any way we can insert or drop copies of I into X1
 � � � 
Xn to form, for example X1

I 
X2
X3
 I, to be canonically isomorphic to just X1
 � � � 
Xn (along with any paren-
thization).

The fact that the two triangles and the pentagon are sufficient to prove this is a celebrated theorem
of Mac Lane, found in [27].

Example 2.11. We would like the following sentence to be true. If C is a category with products
� and a terminal object 1, then (C;�;1) is a monoidal category, and (�;1) is called the cartesian
monoidal structure on C. However, there is a problem with this definition. C �having products�
does not mean that we have chosen a specific object X � Y for every X and Y ; X � Y is only
specified up to canonical isomorphism. There are various ways to get around this; one is by picking
an arbitrary representative for each product.

Note that the fact that all parenthizations of X1�����Xn are canonically isomorphic is simply
a result of the universal property of the product of n objects in a category.

Example 2.12. The same goes for if C is a category with coproducts + and an initial object 0:
(C;+; 0) is a monoidal category, and (+; 0) is called the cocartesian monoidal structure on C.
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Example 2.13. The category FinSet of finite sets and functions between them has a cocartesian
monoidal structure that behaves very similarly to (N;+; 0).

Example 2.14. The category of vector spaces and linear maps has a monoidal structure given by
direct product V �W , which is both the cartesian and cocartesian monoidal structure. We discuss
this more in Chapter 3.

In all of our examples except for Example 2.9, it was true that X 
Y =�Y 
X . The following
definition formalizes this structure, and additionally gives coherence conditions.

Definition 2.15. A symmetric monoidal category is a monoidal category (C;
; I) along with
a natural isomorphism BX;Y :X 
Y !!!!!!!!!!!!!!

�
Y 
X, called the braiding, such that

� The hexagon identity holds:

(X ⊗ Y )⊗ Z

(Y ⊗X)⊗ Z X ⊗ (Y ⊗ Z)

Y ⊗ (X ⊗ Z) (Y ⊗ Z)⊗X

Y ⊗ (Z ⊗X)

aX,Y,ZBX,Y ⊗1Z

aY,X,Z

1Y ⊗BX,Z
aY,X,Z

BX,Y ⊗Z

� BY ;X �BX;Y =1X
Y

These coherence conditions are sufficient to show that there is a unique natural isomorphism
X1
 � � � 
Xn!X�(1)
 � � � 
X�(n) built out of the braiding for any permutation � 2S(n).

Example 2.16. Any cartesian monoidal category is a symmetric monoidal category, as there is
a natural isomorphism BX;Y :X � Y ! Y �X that is given by applying the universal property
of products to the two projections �2:X � Y ! Y and �1:X � Y !X. Dually, any cocartesian
monoidal category is also symmetric.

Finally, there is an even nicer class of symmetric monoidal categories that we often use: compact
closed categories. We start with the definition of closed monoidal categories, originally due to
Eilenberg and Kelly [33].

Definition 2.17. A monoidal category (C;
; I) is called a closed monoidal category if ¡
Y
has a right adjoint [Y ;¡] for every Y. We call [Y ;Z] the hom-object corresponding to Y and Z.

Example 2.18. In the cartesian monoidal category (Set;�; 1), for two sets X and Y we define
[Y ;Z] to be the set of functions f :Y !Z. It is well-known that

Hom(X; [Y ;Z])=�Hom(X �Y ;Z)

The process of taking a function f :X �Y !Z and producing a function f :X! [Y ; Z] is known
as �currying� and the reverse process is known as �uncurrying�.

Compact closed categories are closed monoidal categories where the hom-objects are computed
in a particular way.

Definition 2.19. A dual object for an object A in a symmetric monoidal category (C;
; I) is
an object A� along with

� a morphism evA:A�
A! I

� a morphism iA: I!A
A�

such that the following diagram commutes:

A
∗
⊗ (A⊗A

∗) A
∗
⊗ 1

(A∗
⊗A)⊗A

∗ 1⊗A
∗

α
−1

A∗,A,A∗

evA⊗idA∗

ℓ
−1

A∗
◦rA∗

idA∗⊗iA
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See Ponto [ 34] for more details on dual objects.

The diagram for dual objects is also known as the �zigzag� relation, for reasons that become
apparent in the next chapter. In a general (i.e., not-necessarily symmetric) monoidal category,
there are two diagrams that must commute; in the symmetric setting only one is necessary.

Definition 2.20. A compact closed category is a symmetric monoidal category where each
object A is equipped with a dual object A�.

It is not immediately clear from the above definition that a compact closed category is in fact
even a closed monoidal category. This is the content of the next proposition, whose proof is delayed
until the next section.

Proposition 2.21. A compact closed category is a closed monoidal category with hom-object
[Y ;Z] =Z 
Y �.

Proof. We must display a natural isomorphism

Hom(X;Z 
Y �)=�Hom(X 
Y ;Z)

We prove this with string diagrams in the next section. �

2.3. String diagrams
String diagrams are a way of picturing morphisms in monoidal category in a two-dimensional
syntax. Roughly speaking, the reason why we have a two-dimensional syntax for monoidal cate-
gories and a one-dimensional syntax

X!!!!!!!!f Y !!!!!!!!g Z

for regular categories is that for monoidal categories we have two types of composition for mor-
phisms (i.e. categorical composition with �, and monoidal composition with 
), and we represent
each type of composition with juxtaposition along a different axis.

The basic building block of string diagrams is picturing a morphism f :X1
���
Xn!Y1
���

Ym as a bead with several wires coming in and out. So for instance, f :X1
X2!Y1
Y2
Y3 would
be pictured as

f

X2X1

Y2Y1 Y3

Note that the coherence condition for associativity is essential in interpreting this picture: it is not
possible to parenthesize in string diagrams, so we need to be able to say �the� object Y1
Y2
Y3.

We represent categorical composition of morphisms with vertical juxtaposition:

g

f

g ◦ fY

Z

X

Z

X

=

and we represent monoidal composition with horizontal juxtaposition:

f1 ⊗ f2f2f1 =

X1 X2

Y2Y1 Y1 ⊗ Y2

X1 ⊗X2
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Notice that there is another �ambiguity in parenthesization� inherent in string diagrams; we
can parse the following string diagram in two ways.

f2f1

g1 g2

The first way is by letting f = f1
 f2, g= g1
 g2, and then taking

g

ff2f1

g1 g2

=

and the second way is by letting h1= g1 � f1, h2= g2 � f2, and then taking

h1 h2

f2f1

g1 g2

=

By the fact that 
 is a functor, these end up being equal, so it does not matter in what order
we interpret the string diagrams.

Identities are particularly simple in string diagrams too. The categorical identity 1X:X!X is
pictured as a plain string,

and the monoidal identity I is pictured as a simple lack of a wire, so that a function f : I!X 
Y
would be represented as

f

X Y

Thus, the laws of monoidal categories are made implicit in our notation; it would be impossible
to interpret our notation unambiguously without those laws. For instance, without the boxes to
indicate the categorical and monoidal identities, one would not be able to tell the following two
diagrams apart.

f

f=

Finally, we represent the braiding isomorphism in symmetric monoidal categories by a simple
crossing of wires.
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X Y

XY

=BX,Y

X Y

XY

The coherence conditions for symmetric monoidal categories imply that we can treat the strings
in string diagrams �topologically�; that is we can not worry so much about the exact pattern of
string crossings, and only care where the strings start and end. For instance, coherence implies the
following equality.

=

Finally, we can also represent the compact closed structure with string diagrams. In this
representation, we draw iA: I!A
A� with a downwards-facing curve:

A A
∗

and evA:A�
A! I with an upwards-facing curve:

AA
∗

We can then rewrite the commutative diagram for duals as the following equality, which we think
of as �pulling straight� the wires. One can now see where the term �zigzag� relation comes from.

=

The identification of [A;B] withB
A� in a compact closed category is (morally speaking) captured
in the following diagram, although technically the following diagram pictures Hom(A;B)=�Hom(I ;
B 
A�).

f 7→ f

To actually show that B 
A� is a valid hom-object, we now prove Proposition 2.21.

Proof. (of Proposition 2.21) We sketch the proof using string diagrams. Recall that we must show

Hom(X;Z 
Y �)=�Hom(X 
Y ;Z)

In one direction, this map is given by
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f 7→ f

Y X

Z Y ∗

X

Z

and in the other direction, this map is given by

g 7→ g

Y ∗ Z

X Y

Z

X

The �pulling straight� identity shows that these two operations are inverse, i.e.

f=f

YX

Z

X

Z

Y

We are done. �

It should now be clear why we waited until we had developed string diagrams to give this proof;
what would have been a great deal of tedious symbol manipulation can be reduced to a couple of
intuitively clear pictures.

In general, in a compact closed category we have many options for moving wires around.
Namely, we can cross wires using the symmetric monoidal structure, and we can bend wires using
the closed structure. This idea is formalized by Joyal and Street [35], [36], where string diagrams
are treated as topological spaces, and it is shown that if string diagram A can be deformed into
string diagram B, then they must have naturally isomorphic interpretations as morphisms in a
monoidal category (possibly with symmetric or compact closed structure too).

We see many examples of string diagrams in the upcoming Chapter 3, but before we get there,
we would be remiss if we did not discuss what the relevant morphisms between monoidal categories
are.

2.4. Monoidal functors
We now discuss functors between monoidal categories. As is often the case in higher category
theory, there are choices to make about how strict to be. We present three �gradations� of strict-
ness, from most to least strict. Each of these variants have scenarios in which it is useful. These
definitions can all be found in [30].

Definition 2.22. A strict monoidal functor from a strict monoidal category (C;
C; IC) to a
strict monoidal category (D;
D; ID) consists of a functor F :C!D such that

� F (X 
CY )=F (X)
DF (Y )

� F (IC)= ID

Example 2.23. There is a �black projection� from (N2;+; (0;0)) to (N;+;0), that sends (n1;n2) to
n1. This sends a colored diagram like Figure 2.2 to just its black part. There is also a corresponding
�black inclusion� from N to N2 that sends n to (n; 0).

As always, expecting these equalities to hold is in general not going to be true. So we use a
weaker definition.
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Definition 2.24. A strong monoidal functor between monoidal categories (C; 
C; IC) and
(D;
D; ID) consists of

� a functor F :C!D

� an isomorphism �: ID!F (IC)

� a natural isomorphism �X;Y :F (X)
DF (Y )!!!!!!!!!!!!!!
�

F (X 
CY )

such that � and � interact with the unitor and associator in the appropriate way; namely the
following diagrams commute. The diagram for the associator is

(F (X)⊗D F (Y ))⊗D F (Z) F (X)⊗D (F (Y )⊗D F (Z))

F (X ⊗C Y )⊗D F (Z) F (X)⊗D F (Y ⊗C Z)

F ((X ⊗C Y )⊗C Z) F (X ⊗C (Y ⊗C Z))

aF (X),F (Y ),F (Z)

1F (X)⊗DµY,Z

µX,Y ⊗
C
Z

µX,Y ⊗D1F (z)

µX⊗
C
Y,Z

F (aX,Y,Z )

and the diagrams for the left and right unitors are

ID ⊗D F (X) F (IC)⊗D F (X)

F (X) F (IC ⊗C X)

ǫ⊗D1F (X)

lF (X)

F (lX )

µI
C
,X

and

F (X)⊗D ID F (X)⊗D F (IC)

F (X) F (X ⊗C IC)

1F (X)⊗Dǫ

µX,I
C

F (rX)

rF (X)

These coherence diagrams suffice to show that there is a unique natural isomorphism
F (X1)
D � � � 
DF (Xn)!F (X1
C � � � 
CXn) constructed out of �, which is reasonable.

The first step in categorification is to replace equalities with isomorphisms, but often a fur-
ther step is taken, where the isomorphisms are replaced with morphisms that are not necessarily
invertible. And so we have a third definition.

Definition 2.25. A lax monoidal functor between monoidal categories (C;
C; IC) and (D;
D;
ID) consists of

� a functor F :C!D

� a morphism �: ID!F (IC)

� a natural transformation �X;Y :F (X)
DF (Y )!!!!!!!!!!!!!!
�

F (X 
CY )

satisfying the commutative diagrams of Definition 2.24. Thus, we have a unique morphism
F (X1)
D � � � 
DF (Xn)!F (X1
C � � � 
CXn) for every X1; : : : ; Xn.

Example 2.26. Consider the category 1 with just one object, say �, and its identity morphism.
This category has a unique monoidal structure, which happens to be the cartesian monoidal
structure. A lax monoidal functor (F ; �; ") from 1 to (Set;�; 1) consists of a set F (�), along with
a map

�:F (�)�F (�)!F (�
�)=F (�)
and a map

": 1!F (�)

such that (F (�); �; ") is a monoid. Associativity of �:

�(a; �(b; c))= �(�(a; b); c)
and unitality of � and ":

�(a; ")= a= �("; a)
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is implied by the commutative diagrams in Definition 2.24. In fact, all monoids can be represented
as lax monoidal functors from 1 to (Set;�; 1).

More generally, a lax monoidal functor from 1 into any monoidal category (C;
; I) is a monoid-
like structure internal to C, and we call this amonoid in the monoidal category C; see Maclane
[27, Section III.6].

Lax monoidal functors are also important for defining operad algebras in Chapter 7.
Finally, in the case that we are working with symmetric monoidal categories, we additionally

ask that functors between them respect the braiding. We only give the definition in the lax case:
the strict and strong cases can be produced by requiring that the maps � and � are equalities, and
isomorphisms, respectively.

Definition 2.27. A lax symmetric monoidal functor between symmetric monoidal categories
(C;
C; IC) and (D;
D; ID) is a lax monoidal functor (F ; �; �) such that the following diagram
commutes.

F (X)⊗D F (Y ) F (Y )⊗D F (X)

F (X ⊗C Y ) F (Y ⊗C X)

µX,Y

BF (X),F (Y )

µY,X

F (BX,Y )

2.5. Categories of relations
We end by discussing a particularly useful construction of symmetric monoidal categories: that
of symmetric monoidal categories of relations. This is because, as discussed before, the Willems
approach to systems is essentially relational . That is, systems are not input-output machines, but
rather should be thought of as imposing relations on the things that they are connected to, without
a preordained sense of causality.

In order to get a handle on how this is formalized within category theory, we begin with a
simple category and then we discuss how to generalize it.

Definition 2.28. Let Rel be the following category. The objects of Rel are sets, and a morphism
from X to Y is a subset

R�X �Y

which we write as R:X9 Y and call a relation from X to Y (the slashed arrow represents
relations as opposed to functions). Composition of a relation R:X9Y and a relation S:Y 9Z is
given by

S �R= f(x; z)2X �Z j 9y 2Y ; (x; y)2R^ (y; z)2Sg

We want to think of Rel as somehow �built out of� Set. In this thesis, we encounter several
categories that are similar to Rel, but �built out of� categories other than Set. Thus, it is worth
thinking about what kind of category has the right properties in order to construct something like
Rel.

This right kind of category is a regular category . Regular categories have a long history, begin-
ning with Freyd and Schedrov [37] and independently with Carboni and Walters [38] (though note
that Carboni and Walters use the terminology �cartesian bicategory�). For a comprehensive text-
book level treatment of the subject, we refer the reader to Borceux [39], or Johnstone [40]. Finally,
a more modern take on the material can be found in Fong and Spivak [41], which emphasizes the
graphical nature of regular categories.

Regular categories can be somewhat abstruse at first glance, so we attempt to explain them by
showing how they are the natural structure in order to have a category of relations. A morphism
f :A!B is monic (or alternatively, a monomorphism) if for any g1; g2:X�A, f � g1= f � g2
implies that g1= g2. This generalizes injectivity. Conversely, f :A!B is epic (or alternatively,
an epimorphism) if for any g1; g2:B�X , g1 � f = g2 � f implies that g1= g2. This generalizes
surjectivity.

We use monomorphisms to generalize the idea of subset.

Owen Lynch 25



Definition 2.29. For a category C, and for an object X 2 C, we define Mono(X) to be the
subcategory of C/X consisting of monomorphisms f :A!X.

Proposition 2.30. In Mono(X), two monomorphisms f :A!X and g:B!X are isomorphic in
at most one way.

Proof. Suppose that h; h0:A!B are both isomorphisms such that the following diagrams com-
mute:

A B

X

f g

h
A B

X

f g

h′

Then g �h= f = g �h0. Thus, by the fact that g is a monomorphism, h0=h, and we are done. �

This implies that Mono(X) is equivalent to a category where isomorphic objects are equal.

Definition 2.31. Let Sub(X) be the category where the objects are equivalence classes of objects
in Mono(X) under the equivalence relation of isomorphism. An object of Sub(X) is known as a
subobject of X.

Example 2.32. In Set, we can identify the equivalence class of monomorphisms into a set A with
a literal subset of A.

Definition 2.33. If C is a category with products, a relation in C between objects X and Y is a
subobject R of X �Y.

We can also think of a relation as a span
R

X Y

gf

such that f and g are jointly monic, that is hf ; gi:R!X � Y is monic. Before we investigate
relationships, we first investigate spans.

Definition 2.34. If C is a category with pullbacks, the category Span(C) is defined in the following
way. The objects are objects of C, and a morphism from X to Y is an equivalence class of spans

R

X Y

gf

where two spans (f :R!X; g:R! Y ) and (f 0:R0!X; g 0:R0! Y ) are equivalent if there is an
isomorphism h:R!R0 making the following diagram commute

R

X Y

R
′

f g

f ′ g′

h

Composition of spans is done via pullback, as in the following diagram.

S ◦R

R S

X Y Z

y

Proposition 2.35. Definition 2.34 specifies a well-defined category.
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Proof. For the original proof, see Benabou [42], and for a more modern take, see Baez [43].
However, we go over some of the details for showing that the composition is well-defined, for the
sake of completeness.

Well-definedness comes in two parts. First of all, limits in a category are not defined uniquely;
they are only unique up to unique isomorphism. This is not a problem however, because the
equivalence class of the limit is uniquely specified.

Secondly, we must take into account the fact that the spans that we are composing are only
specified by their equivalence class; it must be true that composing different representatives of the
same equivalence classes produces the same result. This is true because the limits of isomorphic
diagrams are isomorphic. We are done. �

However, we cannot simply compose relations via pullback, because even if R ,!X � Y and
S ,! Y �Z are monic, S �R!X �Z (as defined above) might not be. In Set we can fix this by
taking the image of the map S �R!X �Z. In order to do this in a general category, we need
what are known as image factorizations.

Definition 2.36. Let f :A!B be a morphism in a category C. We say that

A!!!!!!!!
e
C!!!!!!!!!!!!!!!!

m
B

is an image factorization of f if e is epic, m is mono, and given any other factorization f =
m0 � e0 into an epimorphism e and a monomorphism m, m=m0 � k for some k.

Proposition 2.37. Image factorizations are unique up to canonical isomorphism. That is if

A !!!!!!!!e C !!!!!!!!!!!!!!!!m B and A !!!!!!!!!!!!!!e
0

C 0 !!!!!!!!!!!!!!!!!!!!m
0

B are both image factorizations of f : A! B, then there
exists a unique isomorphism ':C!C 0 such that the following diagram commutes:

C

A B

C
′

e
′

m
′

e m

ϕ

Corollary 2.38. If f has an image factorization A!!!!!!!!e C!!!!!!!!!!!!!!!!m B, then there is a unique subobject
of B corresponding to C!!!!!!!!!!!!!!!!

m
B. We call this subobject the image of f, and write it as im(f).

Note that im(f) is not an object of C, it is a subobject of B, which is an equivalence class of
monomorphisms into B. That being said, we will immediately abuse notation and treat im(f) as
an object of C.

Example 2.39. In Set, every function f :A!B has a image factorization with

im(f)= fb2B j 9a2A; f(a)= bg

which coincides with the traditional notion of image. We can see in this example that the idea of
�image� is very much connected to the idea of �existentials�; recall that we needed an existential
quantifier to define composition of relations in Definition 2.28.

We can also define images in Set in a different way. If f :A!B is any function, let

im(f)=A/� (2.1)

where the equivalence relation � is given by a1�a2 if and only if f(a1)= f(a2).
This can be replicated in an arbitrary category in the following way. Suppose that f :A!B is

any morphism. Then take the pullback

A×B A A

A B

p2

p1

f

f

y
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The pair of morphisms p1; p2:A �BA�B is called the kernel pair of f . If we now take the
coequalizer

A×B A A coeq(p1, p2)
p2

p1

then the universal property of coequalizers gives us that f factors through coeq(p1; p2). Moreover,
the map from A to coeq(p1; p2) is an epimorphism because it is a coequalizer map. Later, we show
that the map from coeq(p1; p2) to B is a monomorphism, so this is indeed an image factorization.

If one thinks carefully about this construction, one sees that it is precisely generalizes the
construction of im(f)=A/�. This generalization serves us to define the right structure to use to
build a category of relations.

Definition 2.40. A regular epimorphism in a category C is a morphism f :A!B that is the

coequalizer X�A!!!!!!!!f B of some pair of morphisms.

Example 2.41. Any epimorphism in Set is a regular epimorphism.

Example 2.42. In CMon, the category of commutative monoids, the inclusion f :N!Z is an
epimorphism, as a monoid homomorphism ':Z!M is totally determined by '(1). However, f is
not a regular epimorphism.

A regular category has precisely the properties needed to form images in the manner of Example
2.39, and have them be well-behaved enough to form a good category of relations.

Definition 2.43. A regular category is a category C such that

� C has all finite limits (so in particular, products and pullbacks)

� every kernel pair has a coequalizer

� the pullback of a regular epimorphism along any morphism is again a regular epimorphism

This last condition is a bit dense; what it means is that if f :A!C is a regular epimorphism,
and g:B!C is any morphism, then g�(f) in the following diagram is also a regular epimorphism.

A×C B A

B C

f

g

g∗(f)
y

Example 2.44. Set is a regular category.

Example 2.45. If D is a regular category, and C is any category, DC is a regular category.

Example 2.46. The category of models of any �finitary algebraic theory� is regular. Precisely,
this means the category models of any Lawvere theory is regular; see Barr and Wells [44, Chapter
4] for more details on Lawvere theories. For the reader unfamiliar with Lawvere theories, this class
of categories includes the categories of

� (commutative) monoids

� (abelian) groups

� rings (and commutative rings, rings with unit, etc.)

� modules over a ring

� vector spaces over a field

� convex spaces (as defined in Chapter 9)

Example 2.47. A �convenient� category of topological spaces, e.g. the category cgHaus of com-
pactly-generated Hausdorff spaces, is regular. This is one of the reasons that algebraic topologists
prefer working with categories other than the category of traditional topological spaces. The use
of such convenient categories goes back to Steenrod [45].
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Proposition 2.48. If C is a regular category, and f :A!B is any morphism, then f factors into

A!!!!!!!!e im(f)!!!!!!!!!!!!!!!!m B

where e is a regular epimorphism and m is a monomorphism, and moreover this factorization is
unique up to unique isomorphism.

Proof. We follow the construction of Example 2.39, i.e. we take the coequalizer of the kernel pair.
The full proof can be found in Borceux [39, Theorem 2.1.3]. �

We now finally give the general construction for a category of relations.

Construction 2.49. Suppose that C is a regular category. Then define the category Rel(C) in
the following way. The objects are the objects of C, and a morphism from A to B is a subobject
R ,!A�B.

To define composition of morphisms, suppose that R ,!A�B and S ,!B �C are relations.
Then let f :T!A�C be constructed by pullback in the following diagram

T

R S

A B C

y

We then let S �R= im(f) with its natural monomorphism into A�C.
This is all well-defined because both image factorizations and pullbacks are defined up to isomor-

phism so the same reasoning as in the definition of Span(C) applies. We call Rel(C) the category
of relations for C.

The category of relations of a regular category has a natural compact closed structure. We
exposit this with a series of propositions, given without proof.

Proposition 2.50. If C is a regular category, then there is a functor graph: C!Rel(C) that is
the identity on objects, and sends a morphism f :A!B to the relation

A

A B

f
=

There is also a functor cograph:Cop!Rel(C) defined in the obvious complementary way. More-
over, both of these functors are injective on morphisms.

The next Proposition can be found in Borceux [39, Theorem 2.8.4].

Proposition 2.51. If C is a regular category, there is a natural symmetric monoidal structure
on Rel(C) defined in the following way. On objects of Rel(C) (which are objects of C), we define
A
B to be the categorical product in C (note that this is not the categorical product in Rel(C);
this is why we use 
 instead of �). Then if R1:A19B1 and R2:A29B2, we define R1
R2:
A1
A29B1
B2 to be the subobject of (A1
A2)� (B1
B2) given by applying the isomorphism

(A1�B1)� (A2�B2)=� (A1�A2)� (B1�B2)= (A1
A2)� (B1
B2)

to the categorical product

R1�R2 ,! (A1�B1)� (A2�B2)

The monoidal unit I is the terminal object in C.

Finally, note that subobjects of (A � B)� C are in natural bijection with subobjects A �
(C �B), so HomRel(C)(A
B;C)=�HomRel(C)(A;C 
B). Thus, we expect that B is its own dual.
We record this well-known fact in the following proposition.
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Proposition 2.52. If C is a regular category, then every object in Rel(C) is its own dual, with
maps 1!A 
A and A 
A! 1 given by the diagonal relation A ,!A �A. Thus, Rel(C) is a
compact closed category.

We would give examples at this point, but in fact the entire next chapter consists of examples
of this structure, so we simply move on to that.

3. Categorical Linear Algebra

3.1. Linear maps
Linear algebra in monoidal category theory has a long history. String diagrams were first developed
as a notation for working with tensors by Penrose [46], and are often known as �Penrose graphical
notation� in this context. However, the use of a different monoidal structure for string diagrams,
the direct product monoidal structure, is more recent and is independently due to [6] and [47].

For this chapter, we work over an arbitrary field K of characteristic 0, typically R, but perhaps
also C or R(s) (the field of fractions of the ring of polynomials R[s]). Moreover, all our vector
spaces are finite-dimensional.

Definition 3.1. The category Lin has vector spaces as objects, and linear transformations as
morphisms.

Proposition 3.2. Lin has a symmetric monoidal structure given by the direct product �

V �W = f(v; w) j v 2V ;w 2W g
and unit vector space 0=K0.

The direct product � is both the categorical product, with projection maps

� �1:V �W!V , �1(v; w)= v

� �2:V �W!W , �2(v; w)=w

and the categorical coproduct, with injection maps

� �1:V !V �W , �1(v)= (v; 0)

� �2:W!V �W , �2(w)= (0; w)

Thus, � is a biproduct, which is a word for an operation that is both product and coproduct;
moreover, 0 is both a terminal and initial object in Lin. Consequently, (Lin;�;0) is both a cartesian
monoidal category and a cocartesian monoidal category.

Example 3.3. For every object V 2 Lin and every n2N, there is a map �:V �n! V given by

(v1; : : : ; vn) 7! v1+ � � �+ vn

Note that this is given by the universal property of the coproduct V �n, applied to the maps idV ;:::;
idV . Thus, this map would exist in any cocartesian monoidal category; the reader should think
what this map would be for Set. Moreover, when n=0, this is the unique linear map 0!V . We
draw this map using a black dot with n inputs and one output:

· · ·

This has the curious property that a map composed only of instances of � is determined solely
by its connection structure as a string diagram. That is, suppose that f :V �m!V �n is comprised
solely of instances of �. Then

f(x)j=
X

i connected to j

xi
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This implies that, for instance

= =

which can be seen as a type of �associativity law�.

If we just consider the nullary and binary versions of �, they form a monoid in (Lin;�; 0) (see
Example 2.26 for more about monoids in monoidal categories).

Example 3.4. For every object V 2 Lin and every n2N, there is a map �:V !V �n given by

v 7! (v; : : : ; v)

Note that this is given by the universal property of the product V �n, applied to the maps idV ; : : : ;
idV . Thus, this map would exist in any cartesian monoidal category. Moreover, when n=0 this is
the unique linear map V !0. We draw this map using an unfilled dot with one input and n outputs.

· · ·

This has a similar property to �. That is, in a string diagram comprised only of copies of �, all
that matters is the connection structure. Structures like � are known by the name of comonoid
in a monoidal category [47].

Example 3.5. For every V , and every �2K, where K is the underlying field, there is a map m�:
V ! V given by v 7!� v. We draw this as a triangle with � in it, like the following:

λ

Proposition 3.6. Any linear map K�m!K�n can be represented as a composite of �, �, and
m�, using both normal and monoidal composition.

Proof. Any linear map can be represented as a matrix. We can then express a matrix by successive
steps of �, m�, and �, as illustrated in Figure 3.1. �

Figure 3.1. Proof by picture that all morphisms in Lin are be generated by �, �, and m�

3.2. Linear relations
We can apply the machinery that we developed in section 2.5 to Lin to develop a category of linear
relations. This works because Lin is a regular category (and this is because Lin is the category of
models of a Lawvere theory; see Lawvere [48] or Barr and Wells [44]).
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Definition 3.7. A linear relation from a vector space V to a vector space W is a linear subspace
R�V �W. We write this as R:V 9W. If R:U9V and S:V 9W, then

S �R= f(u;w) j 9v 2V :(u; v)2R; (v; w)2Sg�U �W

Then let LinRel be the category with vector spaces as objects and linear relations as morphisms.

As discussed in Proposition 2.50, we can take a linear map L:V !W and turn it into a linear
relation

graph(L)= f(v; Lv) j v 2V g�V �W

We can do the same for a map L:W! V :

cograph(L)= f(Lw;w) jw 2W g�V �W

Moreover, we have for M :W!X , L:V !W ,

graph(M) � graph(L)= graph(M �L)
and

cograph(L) � cograph(M)= cograph(M �L)

Thus, both Lin and Linop are naturally subcategories of LinRel.
The direct product � is also a symmetric monoidal product on LinRel, even though it is neither

the categorical product nor coproduct in LinRel. All of the necessary natural isomorphisms come
from Lin when thought of as a subcategory of LinRel as discussed before. This is a consequence of
Proposition 2.51. Finally, LinRel is a compact closed monoidal category, by Proposition 2.52.

The maps �, �, and � from Lin all extend to more general relations in LinRel.

Example 3.8. For every vector space V and m; n2N, there is a linear relation �: V �m9 V �n

defined by

((v1; : : : ; vm); (v10; : : : ; vn0 ))2� iff
X
i=1

m

vi=
X
j=1

n

vj
0

This is the composite of
graph(�:V �m!V ):V �m9V

and
cograph(�:V �n!V ):V 9 V �n

We draw this in the obvious way, as a black dot with m wires coming in and n wires coming out.
· · ·

· · ·

We call this the summing junction. This models a situation where there is some conserved
quantity, like electrical current, flowing through a junction. The sum of the currents going in is
equal to the sum of the currents coming out.

Just like with � in Lin, if we have a diagram that is only composed of �, the only thing
that matters is the connection structure of the diagram. These properties make the collection of
morphisms collectively referred to by � into a so-called �Frobenius monoid� [6].

Example 3.9. We also make a Frobenius monoid (or �junction�) out of �, which we call the
matching junction.

· · ·

· · ·

This is defined by
�=f((v; : : : v); (v; : : : ; v)) j v 2V g:V �m9V �n
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That is, all of the wires going into � must have the same value in V . This models some quantity,
like electrical potential, that is held to be equal for all of the wires.

Note that in the real world wires carry a voltage and a potential; keep this in mind for Chapter 4.

Remark 3.10. The story of �scalars� in LinRel is quite interesting, because the morphism m�:
V ! V does not simplify as easily in the relational setting as � and �. Thus, we use a downwards
triangle for graph(m�) and an upwards triangle for cograph(m�). When � and  are non-zero, then
all the following are equal, where �= ¡1 and �� =�¡1 (for compactness).

λ λ

λγ

λ λ

γγ

γλ

γ γ

The subspace represented by all of these is f(v; v 0)jv; v 0 2 V ; � v =  v 0g. So the group of units
(invertible elements) of K injects into the monoid of linear relations R:V 9V with composition.
However, the following four morphisms are all different.

1

0

0

1

0

0

0

0

From left to right, their respective subspaces are f(0; v)jv2V g, f(v;0) jv2V g, f(0;0)g, f(v; v 0) jv;
v 02V g. This gives an interesting perspective on the question of �dividing by zero�. Namely, we actu-
ally can give an non-trivial semantics to something similar to the inverse of 0 (i.e. cograph(m0)),
as long as we are willing for our monoid to be non-commutative (as witnessed by the non-com-
mutativity of graph(m0) and cograph(m0)); see Sobocinski [49].

3.3. Multilinear algebra
The category Lin has another monoidal product on it: the tensor product 
. This is the more
traditional monoidal product on Lin (as opposed to �), and it is the tensor product that lends
monoidal categories their symbol for a generic monoidal product.

The tensor product is neither the categorical product nor the categorical coproduct, however
it does have some interesting categorical structure. The reader is likely somewhat familiar with
the tensor product, however we hope that this section can deepen the reader's knowledge. For an
elementary reference on multilinear algebra, the reader should consult Treil [50, Chapter 8], and
for an in-depth exposition of string diagrams and monoidal categories in multilinear algebra, the
reader should consult Coecke [51].

A slick way in category theory to define something is by saying that it is a representation of a
certain functor.

Definition 3.11. Let C be any category, and let F :C! Set be a functor. We say that X 2C is a
representation for F if F is naturally isomorphic to Hom(X;¡).

Proposition 3.12. If a representation for F exists, it is unique up to canonical isomorphism.

Proof. This is a corollary of the Yoneda lemma, but we will give an explicit proof for pedagogical
purposes. To prove this, we show that the map y:Cop!SetC defined byX 7!Hom(X;¡) is a full and
faithful functor. Having shown this, if F =�Hom(X;¡) and we have any isomorphism F =�Hom(Y ;
¡), we can compose these isomorphisms to get Hom(X;¡)=�Hom(Y ;¡), and thus X =�Y .
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The map y is often called the �Yoneda embedding�; this proof provides the reason why it is
called an embedding.

It is not so hard to show that y is faithful; if f ; g:Y !X are distinct morphisms, then f�; g�:
Hom(X;¡)!Hom(Y ;¡) given by postcomposition are clearly distinct, as idX � f =/ idX � g.

To show that y is full, suppose that � is a natural transformation between Hom(X;¡) and
Hom(Y ;¡). Then we claim that �=�(idX)�. To make sense of this, first note that �(idX)2Hom(Y ;
X), and recall that �(idX)� is the postcomposition functor. We now claim that for any f :X!Z,
�Z(f)=�X(idX)�f =�X(idX) � f . This follows from the following naturality diagram:

Hom(X,X) Hom(Y,X)

Hom(X,Z) Hom(Y, Z)

αX

αZ

f∗ f∗

If we start with idX 2Hom(X;X), following the top we get �X(idX) � f , and following the bottom
we get �Z(f). Thus �=�(idX)�, and we are done. �

Definition 3.13. A bilinear map f :X �Y !Z is a function that satisfies

� f(�1x1+�2x2; y)=�1 f(x1; y)+�2 f(x2; y)

� f(x; �1 y1+�2 y2)=�1 f(x; y1)+�2 f(x; y2)

For any X;Y 2 Lin, we can define a functor BilinX;Y :Lin! Set that sends Z to the set of bilinear
functions X �Y !Z, and sends a map h:Z!Z 0 to the map

BilinX;Y (h)(f :X �Y !Z)=h � f :X �Y !Z 0

We often call a bilinear map X �X!K a bilinear form.

Definition 3.14. A tensor product X 
 Y is a representation of BilinX;Y. That is, the set
Lin(X 
Y ;Z) is naturally isomorphic to BilinX;Y (Z).

Proposition 3.15. There exists a tensor product for every X;Y 2 Lin.

Proof. This is a standard construction, see [52, Chapter VIII.2]. �

This means that we can say �the� tensor product, in accordance with the principle of equiva-
lence, as it exists and is unique up to unique isomorphism.

Definition 3.16. The identity X 
Y !X 
Y corresponds to a bilinear map X �Y !X 
Y that
we denote by (x; y) 7!x
 y.

It can be shown that in general, X1
 �� � 
Xn is a representation for the functor Z 7! fn-linear
maps X1� � � � �Xn!Zg, where n-linear is the natural generalization of bilinear. Using this fact,
and the fact that � is symmetric, associative, and unital, we can show that 
 is a symmetric
monoidal product with I =K being the monoidal unit, so (Lin;
; K) is a symmetric monoidal
category. We record this well-known fact in the following Proposition, which can be found in [30].

Proposition 3.17. (Lin;
;K) is a symmetric monoidal category.

This symmetric monoidal category has additional structure on it, because the set of linear maps
Lin(X;Y ) has a natural vector-space structure. To emphasize this, we use the notation [X;Y ] to
mean the vector space of linear maps from X to Y . Moreover, [¡;¡] is a functor from Linop� Lin
to Lin; this is because we can define its action on morphisms in Linop� Lin to be pre- and post-
composition.

Now, bilinear functions f :X � Y !Z are in one-to-one correspondence with linear functions
f̂ :X! [Y ;Z], via the definition

f̂(x)= f(x;¡)

This gives a natural isomorphism Lin(X 
 Y ;Z)=� Lin(X; [Y ; Z]). Thus, ¡
Y is a left adjoint to
[Y ;¡]. This results in the following proposition.
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Proposition 3.18. (Lin;
; I) is a closed monoidal category, where the right adjoint to ¡
Y is
[Y ;¡].

The tensor product starts to really get interesting when we combine it with duals.

Definition 3.19. For a vector space V, we define the dual space V � to be [V ;K]. Moreover, we
define the contravariant functor (¡)�= [¡;K], so that if L:V !W, then L�:W �!V �.

Definition 3.20. There is a canonical bilinear map V �� V !K (or equivalently, a linear map
V �
V !K) that we denote by

('; v) 7! '(v)= h'; vi
and call the natural pairing.

Proposition 3.21. If e1; : : : ; en is a basis for V, then f1; : : : ; fn defined by

fi(ej)= �ij

is a basis for V �, called the dual basis. As a consequence, dim V =�dimV �.

Proposition 3.22. There is a natural map V !V �� defined by

v 7! h¡; vi

This map is injective, and thus an isomorphism because dimV =dimV � (recall that we work only
with finite-dimensional vector spaces). This is known as the �double-dual isomorphism.�

Proposition 3.23. (V 
W )�=�V �
W �.

Proof. For every ('; �)2V ��W �, there is a bilinear map V �W!K defined by

(v; w) 7! '(v) �(w)

This construction gives a natural map V �
W �! (V 
W )�, and because these vector spaces both
have the same dimension (dim V 
W = dim V dimW ) and this map is injective, this must be an
isomorphism. �

Finally, as one might guess, it turns out that linear algebra dual is the same as the categorical
dual (see Definition 2.20) in the context of the symmetric monoidal category (Lin;
;K). We state
this more formally in a proposition.

Proposition 3.24. The categorical dual of a vector space V in the symmetric monoidal category
(Lin;
;K) is V �=[V ;K]. Specifically, consider the maps idV :K!V 
V � and evV :V �
V !K
defined in the following way. Let v1; : : : ; vn be a basis of V with corresponding dual basis '1; : : : ; 'n
of V �, and define

idV (�)=�(v1
 '1+ � � �+ vn
 'n)

(It can be shown that this is actually basis-independent). Also, define evV to be the map equivalent
to the bilinear map

('; v) 7! h'; vi

Then the two maps idV and evV satisfy the zig-zag identities, proving that V � is the categorical dual
of V.

Corollary 3.25. (Lin;
;K) is a compact closed category.

In fact, (Lin;
; K) was the original compact closed category; compact closed categories were
invented in order to generalize (Lin;
;K).

The practical upshot of all of this category theory is that we can move vector spaces from the
domain to the codomain of a morphism by dualizing them, i.e.

Hom(A
B;C)=�Hom(A;C 
B�)
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This is an extremely common operation in multilinear algebra, and thus satisfying that it has a
categorical basis.

3.4. Quadratic forms
We now make some definitions of a less abstract kind that are useful in the next chapter. We
assume that we work in a field K of characteristic 0.

Definition 3.26. A symmetric bilinear form f :V �V !K is a bilinear form such that

f(u; v)= f(v; u)

for all u; v 2V.

Definition 3.27. A quadratic form is a map q: V !K such that for all a2K, v 2V

q(a v)=a2 q(v)

and the function (u; v) 7! q(u+ v)¡ q(u)¡ q(v) is bilinear.

Definition 3.28. Given a quadratic form, its associated symmetric bilinear form h¡;¡iq is
defined by

hu; viq=
1
2
(q(u+ v)¡ q(u)¡ q(v))

Proposition 3.29. Given a symmetric bilinear form f : V �V !K, define qf(v)= f(v; v). Then
qf is a quadratic form, and h¡;¡iqf= f.

Proof.

hu; viqf = 1
2
(q(u+ v)¡ q(u)¡ q(v))

= 1
2
(f(u+ v; u+ v)¡ f(u; u)¡ f(u; u))

= 1
2
(f(u; u)+ f(u; v)+ f(v; u)+ f(v; v)¡ f(u; u)¡ f(v; v))

= 1
2
(f(u; v)+ f(v; u))

= 1
2
(f(u; v)+ f(u; v))

= f(u; v)

�

The other direction holds to, so the operations of taking the quadratic form associated with a
symmetric bilinear form and taking a symmetric bilinear form associated with a quadratic form
are inverses.

Definition 3.30. Suppose that q:V !R is a quadradic form, and suppose that e1;: : : ; en is a basis
of V such that

q

 X
i=1

n

ai ei

!
=
X
i=1

n

�i ai
2

where �i2f0;¡1;+1g. Then we say that e1;:::; en is a diagonalizing basis of signature (k;n;m)
if k of the �i's are 0, n of the �i's are +1 and m of the �i's are ¡1. If k=0, then we say q is
nondegenerate, and we write the signature as (n;m).

Proposition 3.31. Every quadratic form has a unique signature (although, there is not a unique
diagonalizing basis).

Proof. This can be found in many texts on linear algebra, for instance Shafarevich [53, Chapter
6]. �
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Proposition 3.32. If e1; : : : ; en is a diagonalizing basis for the quadratic form q: V !R with
coefficients �1; : : : ; �n then

hei; ejiq=
�
�i if i= j
0 otherwise

The fact that each quadratic form has a unique signature despite the diagonalizing basis non-
unique is analogous to how each finite-dimensional vector space has a unique dimension, although
the basis that proves that the vector space has a given dimension is non-unique.

3.5. Exterior algebra
We end this chapter with a section on exterior algebra, which is an important subject for differential
geometry. This material can be found in Aluffi [52, VIII.4.1].

Definition 3.33. An alternating bilinear map �: V � V !W is a bilinear map such that
�(v; v)= 0 for all v 2V. An alternating n-linear map �: V n!W is a n-linear map such that
�(v1; : : : ; vn)= 0 if vi= vj for i=/ j.

Proposition 3.34. If �:V �V !W is an alternating bilinear map, then

�(v1; v2)=¡�(v2; v1)

More generally if �:V n!W is an alternating n-linear map, then for any permutation � 2Sn,

�(v1; : : : ; vn)= sgn(�)�(v�(1); : : : ; v�(n))

Proof. For v1; v22V , if � is an alternating bilinear map, then

0 = �(v1+ v2; v1+ v2)
= �(v1; v1)+�(v2; v2)+�(v1; v2)+�(v2; v1)
= 0+0+�(v1; v2)+�(v2; v1)

Thus

�(v1; v2)+�(v2; v1)=0

To prove the n-linear case, we can factor a permutation into a composition of swaps, and then
apply a similar argument. �

Definition 3.35. The second exterior power �2 V is a representative for the functor W 7!
falternating bilinear maps V � V !W g. That is, a linear map f : �2 V !W is equivalent to an
alternating bilinear map V �V !W. In general, the nth exterior power is a representative for
the functor W 7! falternating n-linear maps V n!W g.

Remark 3.36. The identity V �V !V �V is equivalent to a map V �V !�2V ; we call this the
wedge product and denote it (v1; v2) 7! v1^ v2.

Remark 3.37. The vector space �nV is related to the vector space V 
n in two different ways. First
of all, we have a natural inclusion of �nV into V 
n given by the inclusion of alternating n-linear
maps into n-linear maps. This inclusion is important because it identifies �2V with a subspace of
V 
V =� [V �; V ]. This subspace consists of linear maps J : V �!V such that for all v 2V ,

hv; J vi=0

This identification is important later on for discussing Poisson structures and Poisson manifolds.
Secondly, we can identify �nV with the quotient of V 
n by the subspace spanned by all

v1
 �� � 
 vn such that vi= vj for some i=/ j. This identification is useful because it gives a natural
quotient map

V 
n!�nV

Owen Lynch 37



Definition 3.38. The exterior algebra of a vector space V is the vector space

�V :=
M
n=0

1

�nV

This has the structure of an algebra over K when we equip it with the wedge product

^: �kV ��lV !�k+lV

that is defined via

�kV ��lV !V 
k�V 
l!V 
(k+l)!�k+lV

where we have used the inclusion of �nV into V 
n, the natural bilinear map V 
k�V 
l!V 
(k+l),
and the quotient map from V 
n into �nV.

The exterior algebra is important when discussing differential forms in Chapter 5.

4. Dirac Relations

4.1. Bond graphs and Dirac diagrams
In this thesis, we do not attempt to formally define what a bond graph is, because the formalism
that we developed does not exactly fit with the practice of bond graphs. Thus, rather than pre-
senting an account of bond graphs that does not mesh with standard usage, we develop our own
notation, which we call �Dirac diagrams� and which is inspired by both bond graphs and string
diagrams. Consequently, for our purposes, a bond graph is simply a type of diagram used to
represent systems made out of parts that interconnect via power-preserving relations. We do not
formalize bond graphs beyond this brief description.

Bond graphs have a long and rich history going back to 1959. An overview of this history can
be found in a brief document by H.M. Paytner [54], the man who coined the term �bond graph�
and started their use. Many textbooks have been written on bond graphs over the years, from
Thomas [55] in 1975 to Cunha and Machado [56] in 2021.

As bond graphs were originally used in an engineering context, it took a while for mathemati-
cians to notice them and attempt formalization. A full history of the mathematics sparked by
bond graphs is beyond the scope of this thesis; in lieue of a full history we simply list some of the
historical works that have illuminated the path of the present work. The book that introduced the
author to the subject of bond graphs was Thermodynamic Network Analysis of Biological Systems,
by Schnakenberg [3]. However, the main thread of this thesis comes from the work of van der Schaft
and collaborators in developing port-Hamiltonian systems. A full history of this development can
be found in the first chapter of van der Schaft and Jeltsema [14].

Within applied category theory, Coya [8] attempted to formalize the syntax of bond graphs with
a generators and relations point of view, and their semantics with Lagrangian relations. Coya's
work differs from the present work in that it does not consider state, i.e. it only covers bond graphs
and not port-Hamiltonian systems.

More recently, Lohmayer and Leyendecker [57] have worked on representing bond graphs with
undirected wiring diagrams (which we cover in Chapter 7), with the eventual goal of doing a similar
formalization to this thesis. However, the categorical details of that formalization are not quite
developed; we hope that this thesis ends up being helpful to the eventual full treatment within
category theory of their approach. Exergetic port-Hamiltonian systems go farther than this thesis
in terms of capturing thermodynamics, so we look forward to a future synthesis.

In this chapter we describe the syntax and semantics of Dirac diagrams, but we defer description
of the components that these Dirac diagrams are composing in Chapter 6. The reader who finds
this backwards and who has a familiarity with differential geometry is encouraged to skip forwards
and then come back here afterwards; some of Chapter 6 can be read independently from this one.

Finally, for this chapter, when we say vector space, we mean finite-dimensional vector space
over R.
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4.2. Bond spaces
A power-transfering interaction between physical systems is represented by a bond in Dirac dia-
grams, as pictured in Figure 4.1.

e

f

Figure 4.1. A single bond

A bond connects an output port (filled in) to an input port (empty) with a blue flow (f)
and a green effort (e). The meaning of this directionality is that a positive power e � f represents
energy is flowing from the filled port (output port) to the unfilled port (input port) (i.e., left to
right), and a negative power represents flow in the other direction. In a full-fledged Dirac diagram,
each end of the bond is connected to something; Figure 4.1 is simply a fragment of a Dirac diagram.

In Figure 4.2 we see larger fragments of Dirac diagrams, where bonds are used to connect
components with a state that changes over time (like charge, flux linkage, position, or momentum).
We do not model state until Chapter 6, so a precise characterization of these diagrams is left until
then, but it is helpful to know that the flows and efforts are �going somewhere.�

LC

I

I

V C L
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k m
F
v

Figure 4.2. Traditional notation vs. Dirac diagram. A single bond can represent a pair of wires in an
electrical context, or a physical connection between objects in the mechanical context.

Flows and efforts can be vectorial, as systems are often connected by more than one pair of
variables. If the space of flows is modeled by the vector space F , then we model the space of efforts
and flows with a vector space E �F , where E =F�. The total power is given by a quadratic form
�E ;F on E �F called the power form, defined by

�E ;F(e+ f)= he; f i

where e2E , f 2F , and he; f i2R is the natural pairing. Note that h¡;¡i:E �F!R is a bilinear
map when viewed as a two-argument function, but a quadratic form when viewed as a one-argument
function.

As there is not a canonical way of saying which variable is flow and which variable is effort
(there is only a convention), we seek an �invariant� version of E �F . This consists of a vector space
V and a quadratic form �: V !R that is isomorphic to �E ;F, in the sense that it has the same
signature (see Definition 3.30).

Proposition 4.1. �E ;F is a nondegenerate quadratic form of signature (n;n), where n=dim E =
dimF.

Proof. Let f1; : : : ; fn be a basis for F and e1; : : : ; en be the dual basis. Then

e1+ f1; : : : ; en+ fn; e1¡ f1; : : : ; en¡ fn
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diagonalizes �E ;F with coefficients +1; : : : ;+1;¡1; : : : ;¡1. �

Definition 4.2. A split quadratic form on a vector space V of dimension 2n is a nondegenerate
quadratic form on V of signature (n; n).

Definition 4.3. A bond space is a vector space V along with a split quadratic form �:V !R.

Example 4.4. If E is a vector space and F = E�, then E �F with �E ;F(e+ f)= he; f i is a bond
space.

Definition 4.5. We define the standard bond space B to be the bond space R� �R with
power form �B(e+ f) = e f. In general, Bn is the bond space (Rn)��Rn, with the power form
�Bn(e+ f)= he; f i. The first component is the effort and the second component is the flow.

Definition 4.6. If (V ; �) is a bond space, then (V ;¡�) is also a bond space. When we elide the
�, we write (V ;¡�) as V�.

(V ;¡�) represents the same variables, but with the opposite convention for direction of power
flow. I.e., if �(e+ f) is the power coming in, then ¡�(e+ f) is the power going out . Eventually,
the operation V 7! V� makes a certain category compact closed (see Proposition 4.24), so V 7! V�
can be thought of a kind of dual operation.

Example 4.7. B� n is the bond space with underlying vector space (Rn)��Rn and power form
�B� n(e+ f)=¡he; f i.

We now develop the category of bond spaces and power-preserving maps. The function of this
category is to provide the symmetric monoidal structure to a category of relations defined later,
just as Lin and the biproduct provides a symmetric monoidal structure for LinRel. The rest of this
section may be safely skimmed, although it is important from a technical standpoint it does not
directly bear on the development of Dirac diagrams.

Definition 4.8. A power-preserving map from (V ;�) to (V 0;� 0) consists of a linear map L:V !V 0

such that �=� 0 �L.

Example 4.9. Let � 2R such that �=/ 0, and let F be any vector space and E = F�. Then
e+ f 7!�e+ 1

�
f is a power-preserving map from E �F to E �F . This is an abstract representation

of mechanical advantage; devices like levers and pulleys allow one to multiply force while dividing
velocity and vice versa.

Proposition 4.10. The composition of two power-preserving maps is power-preserving.

Definition 4.11. The category Power has bond spaces as objects and power-preserving maps as
morphisms.

Proposition 4.12. All bond spaces are isomorphic to E �F for some E =F�. More specifically,
all bond spaces are isomorphic to Bn for some n.

Proof. Let (V ; �) be a bond space, and let v1; : : : ; vn; w1; : : : ; wn be a diagonalizing basis for �.
Then map this basis to the basis e1+ f1; : : : ; en+ fn; e1¡ f1; : : : ; en¡ fn for (Rn)��Rn where
f1; : : : ; fn is the standard basis for Rn and e1; : : : ; en is the dual basis for (Rn)�. This produces a
bijective power-preserving map, as required. �

Although each bond space is isomorphic to one of the form E � F , there is not a canonical
isomorphism between a given bond space (V ; �) and a bond space of the form E �F . Later on we
do constructions that depend on the bond space being in the particular form E �F .

As an example of this phenomenon, (E �F ; �E ;F) is isomorphic to (E �F ;¡�E ;F) via e+ f 7!
e¡ f or via e+ f 7!¡e+ f . In the port-Hamiltonian literature, one of these two isomorphisms is
used to get around the need to �change the direction� for a bond space; see [14, Definition 2.3] for
an example. The presentation in terms of bond spaces obviates the need to choose one of these
isomorphisms, as we can simply work with (E �F ;¡�E ;F) without needing to make it isomorphic
to (E �F ; �E ;F).
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Proposition 4.13. There is a symmetric monoidal structure on the category Power given by
(V ; �)� (V 0; � 0)= (V �V 0; �+� 0), and with unit (R0; 0), which we denote B0; the 0-dimensional
standard bond space.

Proof. For this proof, we follow the following strategy. We first construct a category of vector
spaces with quadratic forms on them, via the Grothendieck construction. We then use the work
of Moeller and Vasilakopolou [58, Theorem 3.10] to put a symmetric monoidal structure on this
category. Finally, we show that the subcategory of vector spaces with split quadratic forms (i.e.
Power) is closed under the monoidal operations, and so is a symmetric monoidal category itself.

Consider the functor Q: Linop! Set defined by

Q(V )= fquadratic forms on V g

Q(L:V !W )(q:W!R)= q �L:V !R

The Grothendieck construction of Q,
R
Q, is the category where the objects are vector spaces with

quadratic forms, and the morphisms are linear maps that preserve those quadratic forms. Power
is the full subcategory consisting of vector spaces with split quadratic forms. We put a symmetric
monoidal structure on

R
Q by giving Q a lax symmetric monoidal structure and applying Moeller

and Vasilakopolou [58, Theorem 3.10].
We now prove that the following maps give a lax symmetric monoidal structure to Q:

�X;Y :Q(X)�Q(Y )!Q(X �Y )

�X;Y (qX ; qY )= qX+ qY

": 1!Q(R0)

"(�)= 0

We can prove this by diagram-chase. The first condition for these maps giving a symmetric
monoidal structure is the commutativity of

(Q(X)×Q(Y ))×Q(Z) Q(X)× (Q(Y )×Q(Z))

Q(X ⊕ Y )×Q(Z) Q(X)×Q(Y ⊕ Z)

Q((X ⊕ Y )⊕ Z) Q(X ⊕ (Y ⊕ Z))

aQ(X),Q(Y ),Q(Z)

1Q(X)×µY,Z

µX,Y ⊕Z

µX,Y ×1F (z)

µX⊕Y,Z

Q(aX,Y,Z )

Starting with ((qX ; qY ); qZ), it is not hard to see that either way we chase this, we end up with
qX+ qY + qZ. The second condition is commutativity of the following diagram (and the diagram
for the right unitor, not pictured)

1×Q(X) Q(0)×Q(X)

Q(X) Q(0)×X

ǫ×1Q(X)

lQ(X)

Q(lX )

µ0,X

After chasing these, we find that commutativity is equivalent to 0 + q = q = q + 0, and thus
holds. Lastly, the diagram for showing that this is compatible with the symmetry is

F (X)⊗D F (Y ) F (Y )⊗D F (X)

F (X ⊗C Y ) F (Y ⊗C X)

µX,Y

BF (X),F (Y )

µY,X

F (BX,Y )

This can be chased because qX+ qY = qY + qX.
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We have now shown that
R
Q is a symmetric monoidal category. To show that Power is also

a symmetric monoidal category, note that if �: V !R is of signature (n; n) and � 0: V 0!R is of
signature (m;m), then �+� 0:V �V 0!R is of signature (n+m;n+m), so Power is closed under
the monoidal product and thus a symmetric monoidal category in its own right. �

Note that this is neither a cartesian or cocartesian monoidal structure, because the injection
and projection maps are not power-preserving. As mentioned earlier, we do not as of yet know of
much use for Power on its own; its main use in this thesis is to provide a natural category in which
to discuss isomorphisms of bond spaces and also to provide a symmetric monoidal structure for
PowerRel, which we discuss in the next section.

4.3. Power-preserving relations
Just as we generalized linear maps to linear relations, we also generalize power-preserving maps to
power-preserving relations.

Definition 4.14. A power-preserving relation between bond spaces (V ; �) and (V 0; � 0) is a
relation R:V 9V 0 such that if (v; v 0)2R, �(v)=�(v 0).

Proposition 4.15. The composite of power-preserving relations is again a power-preserving rela-
tion.

Definition 4.16. The category PowerRel has bond spaces as objects and power-preserving relations
as morphisms.

We now want to make PowerRel into a symmetric monoidal category analogous to LinRel. To do
this, we define a functor �:PowerRel�PowerRel!PowerRel. On objects of PowerRel, � acts as it
does for Power. That is, (V ;�V )� (W ;�W)= (V �W ;�V +�W). Then on morphisms of PowerRel,
� acts as it does for LinRel. That is, if R1:V19W1 and R2:V29W2 are power-preserving relations
between (Vi; �Vi) and (Wi; �Wi), then R1�R2: V1�W19 V2�W2 is defined to be the monoidal
composition of relations in LinRel; it is not hard to see that this is likewise power-preserving as a
relation between (V1�V2; �V1+�V2) and (W1�W2; �W1+�W2).

Now, just as Lin and Linop are both subcategories of LinRel, so too are Power and Powerop

subcategories of PowerRel, via wide (surjective on objects) embeddings graph:Power!PowerRel and
cograph:Power!PowerRel. All of the requisite isomorphisms needed to make � into a symmetric
monoidal structure on PowerRel come from this graph embedding, and thus � is a valid symmetric
monoidal structure on PowerRel, with monoidal unit B0 as before.

We now reveal one purpose of Dirac diagrams: Dirac diagrams can be used to represent mor-
phisms in PowerRel.

e

f1

e

f2

e

f3

e

f ′
1

e

f ′
2

e

f ′
3

Figure 4.3. An effort-matching, flow-summing junction (0-junction). The outside color of the junction
(blue) represents the quantity that is summed, and the inside color (green) represents the quantity that is
matched. The junction enforces that f1+ f2+ f3= f1

0+ f2
0+ f3

0.

Example 4.17. Fix a bond space of the form (E �F ; �E ;F). Then the effort-matching, flow-
summing junction is the relation J : (E �F)�m9 (E �F)�n defined by

((e1+ f1; : : : ; em+ fm); (e10 + f1
0; : : : ; en

0 + fn
0))2 J
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if and only if

((e1; : : : ; em); (e10 ; : : : ; en0 ))2� and ((f1; : : : ; fm); (f10; : : : ; fn0))2�

That is, ei= ej
0 = e for some e, and

P
i=1
m fi=

P
j=1
n fj. This is pictured in Figure 4.3. In bond

graphs, this is typically called a 0-junction, and sometimes we use this terminology as well.
This is power-preserving, because for ((e1+ f1; : : : ; em+ fm); (e10 + f1

0; : : : ; en
0 + fn

0))2R, we have

X
i=1

m

hei; fii =

*
e;
X
i=1

m

fi

+

=

*
e;
X
j=1

n

fj
0

+

=
X
j=1

n

hej0 ; fj0i

where ei= e= ej
0 for all i; j.

I1 I2 I1 + I2V

V

I1

V

I2

V

I1 + I2

Figure 4.4. 0-junction in electronic circuit and Dirac diagram notation. In the gaps marked with blue
current arrows, we assume that some circuit component is connected, with the noted current passing through
it.

Example 4.18. The 0-junction in the electrical context represents composition in parallel. In
Figure 4.4, we see the traditional circuit diagram version of a zero junction, along with its Dirac
diagram counterpart. Note that the sum of the currents in is equal to the currents out.

e1

f

e2

f

e3

f

e′1

f

e′2

f

e′3

f

Figure 4.5. Flow-matching, effort-summing junction (1-junction). The outside color of the junction (green)
represents the quantity that is summed, and the inside color (blue) represents the color that is matched.
The junction enforces that e1+ e2+ e3= e1

0 + e2
0 + e3

0 .

Example 4.19. Fix a bond space of the form (E �F ; �E ;F). Then the flow-matching, effort-
summing junction is the relation J : (E �F)�m9 (E �F)�n defined by

((e1+ f1; : : : ; em+ fm); (e10 + f1
0; : : : ; en

0 + fn
0))2 J

if and only if

((e1; : : : ; em); (e10 ; : : : ; en0 ))2� and ((f1; : : : ; fm); (f10; : : : ; fn0))2�

This is the dual of the 0-junction, and is also called the 1-junction. It is power-preserving by the
same logic as the 0-junction.
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V1

V2

V1 + V2

I

I

V1

I

V2

I

V1 + V2

I

Figure 4.6. 1-junction in electronic circuit and Dirac diagram notation.

Example 4.20. The 1-junction in the electrical context represents composition in series. In Figure
4.6, we see the traditional circuit diagram version of a 1-junction, along with its Dirac diagram
counterpart. Note that the sum of the voltages in is equal to the sum of the voltages out.

V λV

λI

λI I

I

Figure 4.7. A circuit for a transformer

Example 4.21. Another common example of a power-preserving relation is the graph of e+ f 7!
� e+ 1

�
f . This represents mechanical advantage.

4.4. Poisson structures and pre-symplectic structures
An important special case of a power preserving relation is one between B0 and (V ; �). These
consist of subspaces U �V with � jU=0. Consequently, a power-preserving relation between (V ;�V )
and (W ;�W) can be represented as a power-preserving relation between B0 and (V �W ;�V ¡�W).
We now state this all more formally.

Definition 4.22. An isotropic subspace of a bond space (V ; �) is a subspace U � V such that
� jU=0.

Proposition 4.23. A power-preserving relation between V andW is an isotropic subspace of V��W
(where V� is the dual of V, as defined in Definition 4.6. This is a consequence of the compact closed
structure on PowerRel.

The categorical consequences of the previous fact are stated in the following proposition.

Proposition 4.24. PowerRel is a compact closed category, where the dual of a bond space as defined
in Definition 4.6 is the categorical dual.

Proof. Recall from Definition 2.20 that a compact closed category is a symmetric monoidal
category in which every object has a dual object.

We show that the the dual of V in PowerRel is V� (recall Definition 4.6). We must show that
this satisfies the properties of a dual object. Recall that in LinRel, every object is its own dual,
via the morphisms \: 09 V � V and [: V � V 9 0 both defined by the diagonal �V = f(v; v) j
v2V g�V �V . When viewed as maps \: 09V �V� and [:V� �V 90, in PowerRel, these relations
are power-preserving, because the power of (v; v)2V �V� is �(v)¡�(v)=0.
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It remains to show that the zigzag relations hold, but this is a simple consequence of the
forgetful functor from PowerRel to LinRel being faithful. �

Thus, we can study power-preserving relations by studying isotropic subspaces. We now con-
sider some important examples of isotropic subspaces.

Definition 4.25. Suppose that X is a vector space, and J :X�!X is a linear map such that
h'; J'i=0 for all '2X�. Then we call J a Poisson structure on X, and we call

f('; J') j '2X�g�X��X

the induced isotropic subspace of the Poisson structure.

Using the machinery of Section 3.5, a Poisson structure J :X�!X is equivalent to an alter-
nating map X��X�!R. This is then equivalent to a linear map �2X�!R, which corresponds
to an element of �2X. Thus, a Poisson structure on X is nothing more than a choice of an element
of �2X .

We can just as easily go the other way as well.

Definition 4.26. A Poisson structure on X� is called a pre-symplectic structure on X. This
is simply a map J :X!X� such that hJx; xi=0 for all x2X. We call

f(Jx; x) jx2Xg�X��X

the induced isotropic subspace of the pre-symplectic structure.

By similar reasoning as before, a pre-symplectic structure is equivalent to an element of �2X�.

Definition 4.27. A linear bijection J :X!X� such that hx; J xi= 0 for all x 2X is called a
symplectic structure on X. Note that this is also a pre-symplectic struction and also induces a
Poisson structure on X. A vector space with a symplectic structure on it is called a symplectic
vector space.

Example 4.28. There is a natural symplectic structure on X =V � V � for any vector space V ,
given by the map

J :V �V �! (V �V �)�=�V ��V ��=�V ��V
defined by

J(v; ') 7! (';¡v)
This is a symplectic structure because

h(v; '); (';¡v)i= h'; vi¡ h'; vi=0

Symplectic structures are the foundation of Hamiltonian mechanics, of which port-Hamiltonian
mechanics is a generalization, and we further discuss this thread more in the next two chapters.

4.5. Dirac relations
In every physically relevant power preserving relation R:V 9W that we have seen it has been the
case

dimR= 1
2
(dim V +dimW )

The precise reason for this is not clear to us. However, relations of this form can in fact be charac-
terized in many different ways, which lends a sort of naturality to this condition. For instance, an
isotropic subspace is maximal if and only if it is of this dimension. In any event, the literature on
port-Hamiltonian systems focuses on relations with this property. Thus, in this chapter we restrict
PowerRel to only these relations, which we call Dirac relations.
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In several ways, Dirac relations are highly analogous to Lagrangian relations. As a result,
for the proofs in this section we were able to follow Fong [7, Chapter 6], who studies Lagrangian
relations. It seems like Dirac and Lagrangian relations are somehow dual, though we have not yet
figured out how to make this precise.

The main theorem in this section is a proof that the composite of Dirac relations is again a Dirac
relation. However, it takes a while to get there, and we must first build some general technology
for working with bond spaces and their subspaces. We start with the following definition.

Definition 4.29. Given a bond space (V ; �), let the power bilinear form h¡; ¡i+ be the
associated symmetric bilinear form to �, defined as in Definition 3.28 by

hv; wi+=
1
2
(�(v+w)¡�(v)¡�(w))

Note that hv; vi+=�(v). Moreover, for vector spaces E , F =E�, if e2E and f 2F , and h¡;¡i+
is the power bilinear form corresponding to �E ;F then

he1+ f1; e2+ f2i+=
1
2
he1; f2i+

1
2
he2; f1i

and thus

he; f i+=
1
2
(�(e+ f)¡�(e)¡�(f))= 1

2
�(e+ f)= 1

2
he; f i

Definition 4.30. Given a subspace U �V of a bond space (V ; �), define its polar U� by

U�= fv 2V j8u2U ; hv; ui+=0g

Proposition 4.31. U is isotropic if and only if U �U�.

Proof. First of all, if U �U�, then for all v 2U , hv; vi+=0, so � jU=0 as required. Now, assume
that � jU=0. Then for v; v 02U , v+ v 0 and v¡ v 0 are both in U , so

hv; v 0i= 1
2
(�(v+ v 0)¡�(v)¡�(v 0))= 0

and thus U �U�. �

Proposition 4.32. For U �V,
dimU +dimU�=dimV

Proof. This follows from the rank-nullity theorem, because if u1; : : : ; un is a basis for U , then U�

is the kernel of L:V !Rn defined by

Lv=(hu1; vi+; : : : ; hun; vi+)

and L is surjective because h¡;¡i+ is non-degenerate. �

We also have the following identities for subspaces U ;W �V

(U�)� = U

(U +W )� = U�\W �

(U \W )� = U�+W �

Definition 4.33. U is coisotropic if U� is isotropic, or equivalently if U�� U. D is a Dirac
structure if D is isotropic and coisotropic.

Proposition 4.34. The following are equivalent for a subspace of a bond space D�V.
i. D is a Dirac structure

ii. D is a maximal isotropic subspace

iii. D is a minimal coisotropic subspace
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iv. D�=D

v. D is isotropic and dimD= 1

2
dimV

vi. D is coisotropic and dimD= 1

2
dimV

Example 4.35. Definitions 4.25, 4.26, and 4.27 all give Dirac structures on X �X�.

Definition 4.36. A Dirac relation between V and W is a Dirac structure on V� �W.

Every Dirac relation is also a power-preserving relation, and Examples 4.21 and 4.17 are Dirac
relations.

Now, we would like to make the following definition.

Definition 4.37. DiracRel is the wide subcategory of PowerRel consisting of Dirac relations. That
is, DiracRel is the subcategory of PowerRel containing all of the objects in PowerRel, but only the
morphisms that are Dirac relations.

For this to be well-defined, we must show that DiracRel is closed under composition.

Proposition 4.38. If R is a Dirac relation from (U ; �U) to (V ; �V ), and R0 is a Dirac relation
from (V ; �V ) to (W ;�W), then R0 �R is a Dirac relation from (U ; �U) to (W ;�W).

We prove this via a sequence of lemmas.

Lemma 4.39. Let D � V be a Dirac structure on a bond space V, and let U � V be an isotropic
subspace of V. Then (D\U�)+U �V is a Dirac structure.

Proof. From Proposition 4.34, a subspace is a Dirac structure if and only if it is equal to its polar.
Then we compute using the way that the polar interacts with sums and intersections.

((D\U�)+U)� = (D\U�)�\U�

= (D�+(U�)�)\U�

= (D+U)\U�

= (D\U�)+ (U \U�)
= (D\U�)+U

We are done. �

This next lemma states that every Dirac structure has a complementary Dirac structure. This
generalizes the following example.

Example 4.40. For a vector space E , and for F=E�, both E and F are Dirac structures on E �F .

Lemma 4.41. If D � V is a Dirac structure, then there exists another Dirac structure D 0� V
such that D \D 0= f0g, and D+D 0= V. Moreover, the map v 7! 2 hv;¡i+ from D 0 to D� is an
isomorphism, and if we extend this map to a map D+D 0!D �D�, we get an isomorphism of
bond spaces V =�D�D�, where we put the standard bond space structure on D�D�.

Proof. We construct D 0 in the following way. Start with an isotropic subspace D 0 complementary
with D. If this has dimension 1

2
dimV , then we are done. Otherwise, we claim that D+(D 0)�=V .

For, suppose that hv;wi=0 for all w2D+(D 0)�. Then v2D because D�=D, and v2D 0 because
((D 0)�)�=D 0. Thus, v =0, so (D+ (D 0)�)�= f0g, whence D+ (D 0)�= V . Consequently, we can
write V as

V =D�D 0�D 00

where D 00� (D 0)�. We can then add any v2D 00 to D 0 to make a larger isotropic subspace disjoint
with D.

Repeating this process, we get D 0 such that D 0 is isotropic and of dimension 1

2
dimV , so D 0 is

a Dirac structure by Proposition 4.34. Moreover, D+D 0=V by disjointness of D and D 0.
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Finally, for d1; d22D and d10; d20 2D 0, we have

hd1+ d1
0 ; d2+ d2

0i+= hd1; d20i++ hd10 ; d2i+

and this gives us our isomorphism of bond spaces D�D 0=�D�D�. �

The above lemma shows that each Dirac structure gives a natural way of breaking a bond space
into analogues of effort and flow.

Lemma 4.42. Let U be an isotropic subspace of V. Then U�/U is a bond space with power form
� 0(v+U)=�(v).

Proof. � 0 is well-defined, as for any u2U , v 2U�

�(u+ v)= hu+ v; u+ vi= hu; ui+2 hu; vi+ hv; vi= hv; vi=�(v)

� 0 is clearly also still a quadratic form. Additionally, the power bilinear form

hu+U ; v+U i+=
1
2
(� 0(u+ v+U)¡� 0(u+U)¡� 0(v+U))

is also well-defined.
To show that � has the right signature, let U �D� U� be a Dirac structure, and then pick

another Dirac structure D 0 such that D �D 0= V , which we can do by Lemma 4.41. Let DU =
D/U �U�/U and DU

0 =(D 0\U�)/U �U�/U ; note that U�/U =DU �DU
0 .

Now, let e1; : : : ; en be a basis for D such that U = spanfe1; : : : ; ekg, and let f1; : : : ; fn is
the corresponding dual basis for D 0, given by the isomorphism D 0=�D� of Lemma 4.41. Then
ek+1+U ; : : : ; en+U is a basis for DU, and fk+1+U ; : : : ; fn+U is a basis for DU

0 . Moreover,

ek+1+ fk+1+U ; : : : ; en+ fn+U ; ek+1¡ fk+1+U ; : : : ; en¡ fn+U

is a diagonalizing basis for � 0:U�/U ; it is a basis because U�/U =DU �DU
0 , and it is diagonalizing

by direct computation, as

hei+U ; fj+U i= �ij

Thus, � 0 has signature (0; n¡ k; n¡ k), as required. �

Corollary 4.43. If U is an isotropic subspace of a bond space V, and D�U is a Dirac structure,
then DU =D/U �U�/U is a Dirac structure on U�/U.

We can now prove Proposition 4.38.

Proof. Let R be a Dirac relation from (U ;�U) to (V ;�V ), and R0 be a Dirac relation from (V ;�V )
to (W ;�W). We must show that R0 �R is a Dirac relation from (U ; �U) to (W ;�W).

Recall that this means that R is a Dirac structure on U� � V , and R0 is a Dirac structure on
V� �W . Now, let � be the diagonal subspace

�= f(0; v; v; 0)jv 2V g�U� �V �V� �W

� is isotropic because of the way that the power form is defined on V �V� . The polar of � is

��= f(u; v; v; w)ju2U ; v 2V ;w 2W g�U� �V �V� �W

Consider the projection map ��!U� �W . The kernel of this map is �, and this map is surjective.
Moreover, this map is power-preserving, and thus U� �W =���/�.

We now show that R0 �R�U� �W is a Dirac structure by applying Lemma 4.39 and Corollary
4.43. Recall that

R0 �R= f(u;w) j there exists v 2V such that (u; v)2R and (v; w)2R0g

We want to show that this is Dirac. To do this, we start with the Dirac structure R �R0 on
U� �V �V� �W :

R�R0= f(u; v; v 0; w) j (u; v)2R; (v 0; w)2R0g
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Now, take the intersection of this with ��

(R�R0)\��= f(u; v; v; w) j (u; v)2R; (v; w)2R0g

The projection of the above onto U��W is clearly R0�R. But note that this projection is equivalent
to quotienting by �, i.e.

R0 �R=(((R�R0)\��)+�)/�

Now, Lemma 4.39 implies that ((R�R0)\��)+� is a Dirac structure on U� � V �V� �W , and
then Corollary 4.43 implies that R0 �R is a Dirac structure on ��/�=U� �W , which was what
we wanted. �

We now show that not only is DiracRel a subcategory of PowerRel, but in fact it also has all of
the nice structure of PowerRel.

Proposition 4.44. DiracRel inherits the compact closed structure from PowerRel.

Proof. To show this, it suffices to show that all of the relevant operations in PowerRel restrict to
DiracRel. First of all, as noted before, the direct product preserves Dirac relations. Moreover, any
isomorphism in Power is a Dirac relation, so all of the natural isomorphisms for the symmetric
monoidal structure that come from Power are still present in DiracRel. Finally, the cap and the cup
that characterize the duals in PowerRel are Dirac relations, and so the compact closed structure
carries over as well. �

We finish this chapter by summarizing what we have developed. We wanted to characterize
connections between physical systems that exchanged energy. To do this, we started with formal-
izing a specification of a interface through which power can travel using bond spaces, which are
vector spaces that represent abstract effort and flow. We then formalized connections between the
interfaces of systems using power-preserving relations, which are linear relations that represent
interactions where power is conserved. Finally, we identified an important subclass of power-
preserving relations which we called Dirac relations. The category of Dirac relations has a lot of
nice structure: specifically it is a compact closed category. We represent Dirac relations with Dirac
diagrams.

The next chapter takes what we have done and lifts it to a nonlinear context, while additionally
providing the foundation for port-Hamiltonian systems.

5. Categorical Differential Geometry

5.1. Vector bundles
Up to now we have been primarily concerned with vector spaces, linear maps and linear relations.
However, many systems are not linear. In order to deal with these non-linearities, we use differential
geometry. In this chapter, we review some relevant definitions, as always from a category-theoretic
viewpoint.

We assume that the reader is familiar with basic definitions in differential geometry, such as
manifolds, tangent and cotangent vectors, and smooth maps, and we seek to place these definitions
into a categorical framework. References for this material can be found in Frankel [59] or Baez [60].

Definition 5.1. The category Man has as objects manifolds and as morphisms smooth maps. For
each n, Man has a full subcategory Mann consisting of n-dimensional manifolds.

Definition 5.2. For X a manifold, we define Bund(X)=Man/X to be the category of bundles
over X. An object of this category is a manifold E with a map p:E!X, and a morphism from p:
E!X to p0:E 0!X is a map f :E!E 0 such that the following diagram commutes.

E E
′

X

p

f

p′
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We think of a bundle as a manifold �smoothly parameterized� by X . That is, for each point
x2X, there is a space Ex= p¡1(x) called the fiber that �smoothly depends� on x, or is �modulated�
by x. The simplest version of this is given by the so-called trivial bundle, where Ex is constant.

Definition 5.3. There is a functor TrivX:Man!Bund(X) defined by TrivX(A)=X �A!!!!!!!!!!!!!!!!!!
�1

X.
TrivX(A) is called the trivial bundle with fiber A.

A generalization of this is given by the case where the bundle is only locally trivial.

Definition 5.4. For X a manifold, we may consider the subcategory LTBund(X)�Bund(X) con-
sisting of locally trivial bundles on X. A locally trivial bundle on X is a bundle p: E!X
along with a manifold F called the standard fiber such that for all x 2X there exists an open
neighborhood U 3x and an isomorphism U �F =� p¡1(U) in Bund(U). That is, an isomorphism f :
U �F! p¡1(U) such that

U × F p−1(U)

U

π1

f

p

is a commutative triangle.

Note that F =�Ex for any x. Now, what's the use of a manifold that �varies smoothly� with
points in X, if the manifold is the same for every point? Classically, one reason for this is that such
bundles can have interesting topological structure. For instance, a Möbius strip is an interesting
non-trivial vector bundle over S1. However, even with trivial bundles, there still is a reason to
think about them, because as always in category theory, we care about the morphisms, not the
objects. A morphism betweeen bundles is a �smoothly parameterized� map fx:Ex!Ex

0 . If Ex=�Rn

for every x, Ex0 =�Rm, and fx is linear for every x, then this allows us to use the tools of linear
algebra, even when fx depends non-linearly on x. Such bundles are called vector bundles, and the
category of vector bundles on X , Lin(X), has properties similar to Lin. We now prepare to define
what a vector bundle is.

Proposition 5.5. The category LTBund(X) has all finite products.

Proof. If Man had all (categorical) pullbacks, then products in Bund(X) =Man/X would be
computed by pullback. However this is not the case. That being said, given two locally trivial fiber
bundles p1:E1!X, p2:E2!X with canonical fibers F and F 0 we can construct their product by
taking the pullback p:E1�XE2!X in topological spaces, and then putting the smooth structure
on it given by isomorphisms F �F 0�U =� p¡1(U). �

Definition 5.6. If X is a manifold, then a rank-n vector bundle over X is a locally trivial fiber
bundle E with canonical fiber Rn, along with maps in LTBund(X) (remember, these are fiberwise
maps)

� (¡+¡):E �E!E (addition)

� (¡�¡):Triv(R)�E!E (scalar multiplication)

such that the vector space axioms hold, i.e.

� (E;+) is an abelian group

� � � (e1+ e2)=� � e1+� � e2
� � � ( � e)= (�) � e

We also require that for every point x2X, there exists a neighborhood U 3x and a local trivialization
isomorphism U �Rn=� p¡1(U) that preserves the linear structure. A morphism L:E!E 0 of vector
bundles is then a bundle morphism that respects the vector space structure. The category of vector
bundles and vector bundle morphisms on X we call Lin(X).
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We think of Lin(X) as �the category of vector spaces parameterized by X�. Lin(X) has a
distinguished object, which plays a crucial role.

Example 5.7. For a manifold X , the tangent bundle p:TX!X is defined by

TX = f(x; v) jx2X; v 2TxXg; p(x; v)=x

where TxX is the tangent space to X at a point x. The reader can refer to Frankel or Baez for the
definition of tangent space, and for how to put a manifold structure on TX . If X is n-dimensional,
then TX is a rank-n vector bundle.

We now show how all of our work putting interesting structures on Lin can be neatly extended
to Lin(X). This comes from the theory of smooth functors, as described in Szilasi [61]. Without
going into too much detail, we give an overview of the idea. Our presentation differs from Szilasi,
so as to harmonize better with the other chapters of this thesis.

Definition 5.8. Let Lin=� be the category of vector spaces and vector space isomorphisms.

Definition 5.9. A smooth functor is a functor F from Lin=�
m to Lin such that for all vector spaces

V1; : : : ; Vm;W1; : : : ;Wm, the map

F : Lin=�(V1;W1)� � � � � Lin=�(Vm;Wm)! Lin(F (V1; : : : ; Vm); F (W1; : : : ;Wm))

is smooth with respect to the vector space structures on the domain and codomain.

Smooth functors describe constructions on vector spaces that can be lifted to the category of
vector bundles on a manifold. The fact that the map on morphisms is smooth roughly means that
we can apply it to the transition maps between charts in a manifold.

Example 5.10. The tensor product 
: Lin=�� Lin=�! Lin is a smooth functor.

We use Lin=� because it allows us to handle a greater variety of operations. For instance,
contravariant functors are no problem because we can take inverses.

Example 5.11. Define a smooth functor (¡¡1)�: Lin=�! Lin by sending V to its dual space V �,
and L:V !W to (L¡1)�:V �!W �.

The same trick can be applied to functors of multiple arguments that are covariant in one and
contravariant in the other.

Example 5.12. The closed structure [¡;¡]: Lin=�� Lin=�! Lin is a smooth functor.

Example 5.13. The functor V 7! [V ; V ] is a smooth functor Lin=�! Lin. Note that as [¡;¡] is
contravariant in its first argument and covariant in its second, it would not be possible to define
a contravariant or covariant functor from Lin to Lin with this value on objects.

Example 5.14. The direct sum �: Lin=�� Lin=�! Lin is a smooth functor.

Example 5.15. For any vector space V , there is a functor 1!Lin that picks out V and is trivially
smooth.

Example 5.16. The nth exterior power �n: Lin=�! Lin is a smooth functor.

Proposition 5.17. If X is a manifold, then any smooth functor F : Lin=�
m! Lin induces a functor

Lin(X)(F ): Lin(X)=�
m! Lin(X).

Proof. Conceptually, this is done �fiberwise�. That is, if E1; : : : ; En are vector bundles over X
with projection maps pi:Ei!X and F is a smooth functor, then we construct a vector bundle
Lin(X)(F )(E1; : : : ; En) by letting the fiber over x2X be the vector space

F (p1
¡1(x); : : : ; pn

¡1(x))
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The fact that F is a smooth functor then allows these fibers to be stitched together into a vector
bundle, see Szilasi [61] for details. �

This proposition allows us to �lift� almost all of the constructions that we performed in Chapter
3 into the world of vector bundles. We perform this lifting implicitly, for instance writing E �E 0
instead of Lin(X)(�)(E;E 0). For instance, this can be applied to all of Examples 5.11, 5.10, 5.12,
5.14, 5.15, 5.16; we freely use the notation E�, E
E 0, [E;E 0], E�E 0, and �nE for vector bundles
E.

The following proposition extends Proposition 5.17 to also apply to the construction of maps
between vector spaces.

Proposition 5.18. If F ;G: Lin=�
m! Lin are smooth functors, and �:F)G is a natural transfor-

mation, then for any smooth manifold X we have a natural transformation

Lin(X)(�): Lin(X)(F )) Lin(X)(G)

defined fiberwise by �. That is, if E1; : : : ; En are vector bundles over X with projection maps pi:
Ei!X, and x2X, then the fiber of

Lin(X)(�)E1; : : : ;En: Lin(X)(F )(E1; : : : ; En)! Lin(X)(G)(E1; : : : ; En)

over x is

�p1¡1(x); : : : ;pn¡1(x):F (p1
¡1(x); : : : ; pn

¡1(x))!G(p1
¡1(x); : : : ; pn

¡1(x))

Example 5.19. Any linear map L from a vector space V to a vector space W can be lifted by
Proposition 5.18 to a bundle map V �X!W �X.

Example 5.20. The natural map R! V 
 V � given by sending 1 2R to the identity in [V ;
V ] =�V 
V � can be lifted to a natural map R�X!E 
E� for any vector bundle E.

Example 5.21. The natural map [V ;W ]! [W �; V �] given by taking the dual of a linear map can
be lifted to a map of bundles [E1; E2]! [E2�; E1�].

As this lifting is defined fiberwise, it clearly respects composition. Thus, all the operations,
natural isomorphisms, and coherence conditions that give Lin its two monoidal structures carry
directly into Lin(X).

Proposition 5.22. For any manifold X, (Lin(X);�;R0�X) is a symmetric monoidal category
(see Proposition 3.2).

Proposition 5.23. For any manifold X, (Lin(X);
;R�X) is a symmetric monoidal category
(see Proposition 3.17).

Proposition 5.24. For any manifold X, (Lin(X);
;R�X) is a compact closed category (see
Corollary 3.25).

As mentioned before, the original use of string diagrams was for tensor algebra. In fact, it was
for tensor algebra that varied over a manifold, i.e. this precise category. However, so the reader does
not become confused, we should point out that the �cap and cup� in the setting of Penrose graphical
notation typically referred to the metric tensor (discussed in the next section), not the dual maps.

Now that we have discussed a wide variety of ways of constructing vector bundles, the reader
might be wondering what one does with them after they have been constructed. The next section
gives one answer to this question.

5.2. Sections of vector bundles
Just as the elements v of a vector space V are represented by linear maps out of R which send
1 to v, so too we might think of the �elements� of a vector bundle E over X as being maps from
R�X . However, these are not simply the elements of E considered as a manifold, rather this is
a choice of an element in Ex for each x. We call this a section.
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Definition 5.25. A section of a vector bundle p:E!X consists of a smooth function ':X!E
such that p � '=1X. The space of sections we call ¡(E).

Proposition 5.26. ¡(E) has a natural vector space structure on it, given by pointwise operations.

Proposition 5.27. ¡(E) is naturally isomorphic to HomLin(X)(R�X;E).

Proof. A vector bundle morphism f :R�X!E induces a section x 7! f(1; x), and moreover any
section ' induces a vector bundle morphism via f(�; x)=�'(x). �

As the analogous object to �elements of a vector space�, �sections of a vector bundle� play an
immensely important role in differential geometry, and by extension, any field that relies on it.

Definition 5.28. A dynamical system consists of a manifold X along with a section v of the
tangent bundle TX. Such a section is typically called a vector field. A trajectory of such a
dynamical system consists of a smooth map : [a; b]!X such that  0(t)= v((t)) for all t2 [a; b].

Dynamical systems are a particularly simple type of ordinary differential equation, and are
often written in a more equational form as something like

x_ = v(x)

A solution of this equation is precisely a trajectory of the dynamical system.

Example 5.29. Let SBF:Lin=�! Lin be the functor that sends a vector space to the vector space
of symmetric bilinear forms on that vector space. A Riemannian manifold is a manifold X
equipped with a section g of the bundle SBF(TX), such that g(x): TxX � TxX!R is positive-
definite for each x. The section g is known as the metric tensor. The study of Riemannian
manifolds is called Riemannian geometry .

There are two particularly important classes of sections in differential geometry.

Definition 5.30. A rank (n;m) tensor over a manifold X is a section of the vector bundle
(TX)
n
 (T �X)
m.

Example 5.31. The metric tensor on a Riemannian manifold is a rank (0; 2) tensor.

Definition 5.32. A differential form of order n over a manifold X is a section of the vector
bundle �nT �X. The space of differential forms of order n we call 
nX =¡(�nT �X).

5.3. Nonlinear Dirac relations
Just as we can discuss vector bundle maps, which we think of as linear maps that are nonlinearly
parametrized by a manifoldX, we can also discuss relations between vector bundles, which we think
of as linear relations that are nonlinearly parametrized by a manifold X . A relation between vector
spaces V and W is a linear subspace of V �W ; the exact same definition works for vector bundles.

Definition 5.33. A linear sub-bundle of a vector bundle p:E!X is a subobject of E in Lin(X),
that is a bundle E 0 along with a monomorphism E 0!E.

Definition 5.34. A linear bundle relation between a vector bundle E1 and a vector bundle E2
over the same manifold X is a linear sub-bundle R�E1�E2.

Now, we would like to simply show that Lin(X) is a regular category and then follow the
standard construction to make a category of linear bundle relations. However, this does not work;
Lin(X) is not a regular category. This is because maps in Lin(X) are not necessarily of constant
rank, so the image/kernel of a map in Lin(X)may not have constant dimension, and thus might not
be a vector bundle. Thus, the naive composite of two linear bundle relations (i.e. via composing
the linear relations fiberwise) might not even be a vector bundle, as it might not have constant
dimension across its fibers.
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On the other hand, the composite of two Dirac relations of given dimensions is of a fixed
dimension, because it is also a Dirac relation. Thus, we might hope that if we restrict our attention
only to Dirac relations, this constant-rank property might lead to composition being well-defined.
Unfortunately, it is unclear that the composite is a submanifold, and we have not yet been able to
prove it.

It could be that we are missing assumptions; Dirac structures in the setting of differential
geometry are quite complex to define and have additional properties. To treat them properly, we
would have to talk about some geometric properties that are absent in the linear treatment (i.e.
integrability), and this would lead us farther into differential geometry than we would like to travel
in this thesis. The interested reader can reference Merker [62] for more information on this subject.

Fortunately, for what we do in this thesis, we do not need any of these geometric properties. We
thus go forwards with a not completely satisfactory treatment of the subject, which is nevertheless
sufficient for what we want to prove later.

Definition 5.35. Let Q: Lin=�! Lin send a vector space V to the vector space of quadratic forms
on V.

Definition 5.36. A bond bundle over a manifold X is a vector bundle E over X along with a
section � of Q(E) called the power form such that �x:Ex!R is a split quadratic form for all
x2X.

Example 5.37. For any vector bundle E over a manifold X , E �E� is a bond bundle with the
power form

�x(e+ f)= he; f i
where e2Ex, f 2Ex�.

Example 5.38. For any manifold X , the bundle TX �T �X is a bond bundle, equipped with the
power form from Example 5.37.

Example 5.39. If X is a manifold, and (V ; �) is a bond space, then (V �X;�) is a bond bundle
over X.

Definition 5.40. If B is a bond bundle over a manifold X with power form �, then define B� to
be the bond bundle with underlying vector bundle the same as B and power form ¡�.

Definition 5.41. The category Power(X) has as objects bond bundles over X and as morphisms
power-preserving vector bundle morphisms.

We now give our definition of a Dirac relation between two bond bundles.

Definition 5.42. If A and B are two bond bundles over a manifold X, then a Dirac relation
D:A9B between them consists of a Dirac relation Dx�A�x�Bx for every x2X.

Note that we do not require thatD is itself a linear subbundle of A��B; this is why the definition
is not quite adequate. This makes the following proposition trivial to prove.

Proposition 5.43. If A, B, and C are all bond bundles over a manifold X, and D:A9B and
D 0:B9C are both Dirac relations, then D 0 �D:A9C is also a Dirac relation, where (D 0 �D)x=
Dx
0 �Dx.

Definition 5.44. The category DiracRel(X) has as objects bond bundles over X and as morphisms
Dirac relations between them.

Proposition 5.45. There is a functor TrivX: DiracRel! DiracRel(X) that sends a bond space
(V ;�) to the bond bundle (V �X;�), and a Dirac relation R�V� �W to the Dirac bundle relation
R�X � (V� �W )�X.
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6. Port-Hamiltonian Systems

6.1. Hamiltonian mechanics

Before discussing port-Hamiltonian systems, we give a brief review of Hamiltonian mechanics.
Port-Hamiltonian systems generalize Hamiltonian mechanics in several ways, but Hamiltonian
mechanics remain an important special case. The reader can refer to Sussman and Wisdom [63],
Taylor [64] or Arnol'd [65] for an account of the material of this section in much greater depth.

The object of Hamiltonian mechanics is to derive system dynamics for a closed , energy-con-
serving system from the energy of the system. To put this more mathematically, we are given a
state space X (which we assume to be a manifold) and a smooth function H:X!R called the
Hamiltonian, which is supposed to model the energy of a point in the state space. We want to derive
a vector field �H 2¡(TX) such that the system dynamics are described by the differential equation

x_ = �H(x) (6.1)

Without any additional information, this is not in general possible. However, it turns out that
there is a certain structure that we can put on our state space X , natural in many cases, that gives
us a way of taking any smooth function H:X!R and producing a vector field �H 2¡(TX). This
structure is called a Poisson structure, but before we get to defining it, we give examples of this
setup.

q

p

Figure 6.1. A free particle at position q with momentum p.

Example 6.1. A particle of mass m in 3-dimensional space has state space X =R6, with coordi-
nates (q; p) describing position and momentum respectively. The more traditional (and isomorphic)
state space is T �R3. Suppose that this particle is acted on by a conservative force field F . A typical
Hamiltonian for such a particle is given by

H(q; p)= 1
2m
kpk2+U(q)

where 1

2m
kpk2 is called the kinetic energy and U(q) is called the potential energy, defined by

U(q)=¡
Z
a

b

F (x) �  0(t) dt

where : [a; b]!R3 starts at a fixed point q0 and ends at q; conservativity of F implies that it
does not matter which  we choose, though choosing a different q0 would change U by a constant.
The reason there is a negative sign is that F is the force applied to the particle by the field, but
when want to calculate the potential energy (i.e., the energy �stored in� the field), we say that the
potential energy is the work done on the field by the particle, and thus there is a negative sign.

Note that as a result of the fundamental theorem of calculus, F =¡rU , and thus F =¡@H

@q
.

That is, we can deduce the force from the Hamiltonian. This observation is the key to Hamiltonian
mechanics.

Φ
q2

q1

Figure 6.2. A circuit with charges q1 and q2 on two capacitors, and flux linkage � through an inductor
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Example 6.2. Consider the circuit diagram in Figure 6.2. The state space for this is X =R3, as
the state of the circuit can be described by the charges q1 and q2 on each of the capacitors and the
flux linkage � on the inductor. Then the Hamiltonian is

H(q1; q2;�)=
1
2C1

q1
2+ 1

2C2
q2
2+ 1

2L
�2

where C1 and C2 are the respective capacitances of the capacitors and L is the inductance of the
inductor.

θ

L

Figure 6.3. Pendulum at angle � with angular momentum L

Example 6.3. A pendulum with a rod of length l and mass m concentrated at the tip is described
by its angle � and angular momentum L, and has Hamiltonian

H(�; L)=mg l sin �+ 1
2ml2

L2

Example 6.4. Consider n point masses attached to each other with rigid rods, spinning freely in
space around their common center of mass. This rigid body is described by vectors measuring the
displacement of each particle from the center of mass frk2R3g, and the mass of each particle fmk2
R>0g. The state of this rigid body is given by a rotation �2 SO(3) and an angular momentum
L2T��(SO(3)), so the state space is X=T �(SO(3)). To compute the kinetic energy, we recall that
the angular momentum L is related to the angular velocity ! via the equation

L= I~!

where I~ is the moment of inertia tensor, which can be computed from the rk and the mk. For-
mally speaking, I~ is a section of [T (SO(3));T �(SO(3))], giving an invertible linear map T�(SO(3))!
T�
�(SO(3)) for each �2SO(3). Now, recalling that kinetic energy is 1

2
hw;Li, we can now write

H(�; L)= 1
2
hI~�¡1(L); Li

Thus, once we have used rk and mk to compute I~�, we have a problem posed only in the 6
dimensions of T �(SO(3)), rather than a problem in the 6n dimensions it would take to represent
the positions of all the point masses directly.

Now, before we talk about how we determine �H from H, let us discuss what properties such
a determination should satisfy, speaking from physical intuition. By no means is the following
argument a deduction of Hamiltonian mechanics. However, it should show at least that Hamiltonian
mechanics is a reasonable idea for modeling closed mechanical systems.

First of all, as we are dealing with a closed system, we need for H to be conserved along the
motion of �H. That is, if :R!X is a solution to (6.1), then

d
dt
H((t))= 0 (6.2)

Using the chain rule, we get

0= d
dt
H((t))= hdH((t));  0(t)i= hdH((t)); �H((t))i

Or, put in a simpler manner,

hdH; �Hi=0 (6.3)
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To derive our second assumption, note that through physical experiments we cannot determine
the total energy of a system, only changes in that total energy. Thus if H 0(x)=H(x)+ c for some
constant c, we should have �H= �H 0. We write this as

�H= �H+c (6.4)

Finally, we assume that there is no �action at a distance�. That is, if H and H 0 agree in some small
neighborhood around x, then �H(x) should be equal to �H 0(x); the evolution of a system should
only depend on how the energy changes locally , and not on changes of energy that might be far
away. Thus, for U open and x2U

H jU=H 0jU implies that �H(x)= �H 0(x) (6.5)

A simple determination of �H from H that satisfies Equations 6.4 and 6.5 is for �H(x) to just
depend linearly on dH(x), i.e.

�H(x)= J(x) dH(x) (6.6)

Then, in order to satisfy Equation 6.3, we require J(x):Tx�X!TxX to be a skew-symmetric linear
map, i.e.

h'; J(x) 'i=0

for all ' 2 Tx�X. Finally, we also require that J(x) depends smoothly on x. Now, a linear map
J(x): Tx�X! TxX is the same thing as an element of (Tx�X)�
 TxX =� TxX 
 TxX, and then
skew-symmetry is expressed by J(x) residing in the second exterior power of the tensor product,
�2TxX. Thus, J can be expressed as a section of �2TX .

It turns out that many mechanical systems (including Examples 6.1, 6.2, 6.3, 6.4) can indeed
be described by such a structure. Thus, we make the following definition.

Definition 6.5. An almost Poisson manifold is a manifold X along with a smooth section J
of the bundle �2TX. This gives a Poisson structure (see Definition 4.25) to TxX for each x. We
thus also say that J is a almost Poisson structure on X.

The name of the previous definition suggests that there is an another condition needed to make
an almost Poisson manifold into a Poisson manifold. And this is indeed the case; Poisson manifolds
also have have an integrability condition on J which is necessary for the flow of �H to preserve
J . As we will not be talking about integrability, we will not go into this in depth, though we will
not discuss any examples that aren't integrable, so all of our examples will be of proper Poisson
manifolds. For a more in-depth look at integrability and Poisson geometry, see Weinstein [66].

Example 6.6. In this example, we derive an appropriate Poisson structure on T �R3 by using our
physics intuition applied to Example 6.1. Recall that in Example 6.1, we described the state of a
free particle with coordinates (q; p) representing position and momentum respectively, and we had
a Hamiltonian

H(q; p)= 1
2m
kpk2+U(q)

where

U(q)=¡
Z
a

b

F (x) �  0(t) dt

for some conservative force F , and any : [a; b]!R3 such that (a)= q0, (b) = q. Then we can
derive F from U by

F =¡@U
@q

In fact, we can derive F from H via

F =¡@H
@q

because the kintetic energy does not depend on q.
Now, Newton's second law is commonly written as

F =ma=mx�
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However, using p=mx_, we can equivalently write it as

F = p_

This is the form that we want to use for the present derivation, because we can now write

p_ =¡@H
@q

We are halfway to a differential equation for the evolution of (q; p); we now must derive q_. This
is more straightforward, as q_ is velocity, and momentum is mass times velocity,

q_ = 1
m
p

If we now take the partial derivative of H with respect to p, we get precisely this.

@H
@p

= 1
m
p

This seems perhaps a bit convoluted, but it turns out that the equation

q_ = @H
@p

is in fact more fundamental than q_ = 1

m
p; when relativity is brought into the picture q_ = 1

m
p is no

longer true, but q_ = @H

@q
remains true. In any case, this now allows us to write a set of equations

for the evolution of (q; p) in terms of partial derivatives of H

q_ = ¡@H
@p

p_ = ¡@H
@q

If we write

dH =

2664 @H

@q

@H

@q

3775
and then let

J =
�

0 I
¡I 0

�
where I is the identity matrix, we can then write this equation as

�
q_
p_

�
=
�

0 I
¡I 0

�2664 @H

@q

@H

@q

3775=J dH

This J is then a Poisson structure on X =T �R3.
When we write J out as a matrix, the fact that it is an alternating map can be expressed by

saying that it is skew-symmetric, that is Jij=¡Jji.

Note that we have been rather cavalier here with regard to differential geometry, in that we
have identified both T(q;p)X and T(q;p)

� X with R6 in order to write down J as a matrix.

V1 + V2

V2

V1

I

I

Figure 6.4. Currents and voltages for the circuit from Figure 6.2
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Example 6.7. We now put a Poisson structure on the state space R3 of the circuit in Example
6.2. We want to make a Poisson structure that gives the right dynamics when applied to the
Hamiltonian

H(q1; q2;�)=
1
2C1

q1
2+ 1

2C2
q2
2+ 1

2L
�2

As all of the circuit components are connected in series, there is a single current I that runs through
all of them, and this current is related to the flux linkage in the inductor by

L I =�B

where L is the inductance of the inductor. We can get this current out of the Hamiltonian via

I = @H

@�

This current feeds into both of the capacitors, so

q_1= q_2= I = @H
@�

To derive the dynamics of �, recall that the voltage across a capacitor satisfies

CiVi= qi

This can be written in terms of the Hamiltonian as

Vi=
@H
@qi

Then the change in the flux linkage is given by

�_ =¡(V1+V2)=¡
�
@H
@q1

+ @H
@q2

�
There is a negative sign there because of how we chose the directionality of voltage. In total, we have

q_1 = @H
@�

q_2 = @H
@�

�_ = ¡
�
@H
@q1

+ @H
@q2

�
or equivalently, 2664 q_1

q_2
�_

3775=
24 0 0 1

0 0 1
¡1 ¡1 0

35
2666666664

@H

@q1

@H

@q2

@H

@�

3777777775
If we let J be the matrix above, then we have a Poisson structure on the manifold R3. In later
sections, we show how this Poisson structure can be deduced directly from the interconnection
pattern (which is a 1-junction).

Φq2q1

Figure 6.5. Two capacitors in parallel
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In general, however, a circuit does not represent a Poisson manifold. For one, circuits often
have resistors, which do not conserve energy. However, even a circuit without resistors are not in
general represented by a Poisson manifold. The reason why can be illustrated by Figure 6.5. In
that circuit, the state of the circuit is constrained by the fact that the voltages across each of those
capacitors must be equal, so the charges on the capacitors must always satisfy

1
C1

q1=
1
C2

q2

Such a constraint of systems cannot be expressed within the formalism of Poisson manifolds.
But most importantly, Poisson manifolds cannot express open systems, i.e. systems where

energy comes in and out. The generalization to port-Hamiltonian systems provides the flexibility
to tackle these problems.

6.2. Port-Hamiltonian systems

Port-Hamiltonian systems add two innovations to Poisson manifolds. The first is that a port-
Hamiltonian system has an interface by which it can transmit and receive energy. This takes the
form of a bond space. Recall from section 4.2 that a bond space is a vector space V along with a
split quadratic form � called the power form, and the architypical example of bond spaces is E �F ,
where E is a vector space and F = E�, along with the quadratic form �(e+ f)= he; f i.

For instance, a capacitor is a port-Hamiltonian system with interface B=R�R�. An element
(I ; V )2R�R� represents the current running through and voltage across the capacitor, respec-
tively, and their product I V represents the power running into the capacitor. Typically port-
Hamiltonian systems also model dissiapative elements, such as resistors, however we have chosen
to leave out dissiapative elements for simplicity.

The second innovation is that we drop the requirement that we can uniquely determine x_ from
dH(x), as is true in Poisson systems. We replace this with a more general relation between x_ ,
dH(x), and the interface variables.

Definition 6.8. If B is a bond space, then port-Hamiltonian system on B consists of

� A manifold X. This represents the state of the system, and is called the state manifold.

� A smooth function H:X!R. This represents the energy of the system, and is called the
Hamiltonian.

� An element D of DiracRel(X)(TX �T �X;TrivX(B)). That is, for every X, Dx is a Dirac
relation between TxX � Tx�X and B. This represents the connection between the system
and its interface, and is called the connecting Dirac relation.

In order to understand port-Hamiltonian systems, we really must talk about their semantics
in terms of trajectories, but for concreteness, we give an example before we get into that.

Example 6.9. A capacitor is a port-Hamiltonian system on interface B=R�R�, with

� X =R. The state of a capacitor is the amount of charge stored, so we use the letter q to
represent a point in X.

� H(q) = 1

2C
q2. The energy of a capacitor with q charge stored is 1

2C
q2, where C is the

capacitance.

� Dq� (TX �T �X)� (R�R�) defined by

Dq= f(�; '; V ; I) j �= I ; V = 'g

This connecting Dirac relation makes more sense when we talk about trajectories, but
roughly speaking, this mean that the derivative of the charge stored is the current, and the
voltage is the derivative of H with respect to the charge stored.

60 Relational Composition of Physical Systems



We now discuss the �behavior� of port-Hamiltonian systems. Unlike with Poisson manifolds, a
port-Hamiltonian system does not necessarily have a unique forwards evolution. This is because
the evolution of a port-Hamiltonian system depends crucially on inputs and outputs: the values
over time of the interface variables.

Definition 6.10. Suppose that (X; H; D) is a port-Hamiltonian system on interface B. Let
[a; b]�R be an interval, and let b: [a; b]!B be a smooth path in B. A trajectory of (X;H;D)
compatible with b consists of a map : [a; b]!X such that for all t2 [a; b],

( 0(t); dH((t)); b(t))2D(t)

In the equation for a trajectory, we relate  0(t), dH((t)) and b(t). Often it is convenient to
simply use  0(t) and dH((t)) in place of generic �dummy� variables when specifying the relation
between TX �T �X and B. For instance, we might describe a capacitor by the equations

q_ = I

@H
@q

=Cq=V

instead of using variables � and ' that later get identified with q_ and @H

@q
as in Example 6.9. We

call these the kinetic equations, and this should be understood as a notational convenience for
conserving variable names; the formal structure remains unchanged.

The compatibility condition from Definition 6.10 is precisely what we need to prove the fol-
lowing theorem.

Theorem 6.11. If (X;H;D) is a port-Hamiltonian system on interface B, b: [a; b]!B is a smooth
path through the interface, and : [a; b]!X is a compatible trajectory, then for all t2 [a; b]

H((t))¡H((a))=
Z
a

t

�(b(t)) dt

Proof. As a Dirac relation is power-preserving,

( 0(t); dH((t)); b(t))2D(t)

implies that

�(b(t))= h 0(t);dH((t))i

The result then follows from the fact that

d
dt
H((t))= h 0(t);dH((t))i

and the fundamental theorem of calculus. �

Thus, we can calculate the energy difference along a trajectory purely by looking at the power
put into the interface.

Example 6.12. In this example, we construct a trajectory of the capacitor, as defined in Example
6.9. Let [a; b] be an interval, let I: [a; b]!R be any smooth function, and fix q02R. Then define
q: [a; b]!X =R by

q(t)= q0+
Z
a

t

I(t) dt

and V : [a; b]!R by

V (t)= 1
C
q(t)

Then V �I: [a;b]!R�R�=B is a path through the bond spaceB, and q: [a;b]!X is a compatible
trajectory, as

@

@ q
H(q)= @

@q

1
2C

q2= 1
C
q
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We can see that for an arbitrary path b: [a; b]!B, there is probably no compatible trajectory q:
[a; b]!X, and in general there exists at most one path. Thus, we can think of the port-Hamiltonian
system as putting a constraint on its interface variables.

In this scenario, Theorem 6.11 states that

1
2C

q(t)2¡ 1
2C

q(a)2=
Z
a

t

V (�) I(�) d�

which is a well-known fact for a capacitor.

Example 6.13. An immovable wall is a very simple port-Hamiltonian system on B. It has

� State space X =R0. The wall only has one state.

� Energy function H =0. The energy of that one state is 0.

� Connecting Dirac relation f(F ; 0)jF 2Rg�B=� TR0� T �R0� (B�R0). When the state
space is trivial, the connecting Dirac relation is simply a Dirac structure on the interface.

A trajectory exists for a path (F ; v): [a; b]!R if and only if v(t)=0 for all t2 [a; b]. This enforces
the property that one can push and pull on a immovable wall as much as one likes, but it won't
go anywhere. In this scenario, Theorem 6.11 states that pushing on an immovable wall does not
impart any energy.

Example 6.14. If (X;J) is a Poisson manifold, and H:X!R is any smooth function, then define
a Dirac relation between TX�T �X and the empty interfaceB0 in the following way. First note that
such a Dirac relation is simply a Dirac structure on TX�T �X. Then define a Dirac structure D by

Dx= graph(J(x))= f(J(x) '; ') j '2Tx�Xg�TxX �Tx�X

A trajectory of (X;H;D) compatible with the trivial path b: [a; b]!B0 is then a map : [a; b]!X
such that

 0(t)=J((t)) dH((t))

This is a solution to the differential equation

x_ =J(x) dH(x)

which is Hamilton's equation. Thus we see that Hamiltonian mechanics is subsumed by port-
Hamiltonian systems.

Example 6.15. In this example, we consider the example of a forced pendulum. This is a port-
Hamiltonian system on interface B with

� State space X =T �S1, representing rotation � and rotational momentum L

� Hamiltonian

H(�; L)=mg l sin�+ 1
2 I

L2

where m is the weight at the end of the pendulum, l is the length of the pendulum, and
I =ml2 is the moment of inertia of the pendulum.

� Dirac relation

D(�;L)= f((!; �in+ l cos � Fap); (¡�in; !); (Fap; l cos � !)) j!; Fap; �in2Rg

In this relation, ! is the angular velocity, �in is the �internal torque� produced from the
Hamiltonian (in this case produced by gravity), and Fap is the linear applied force to the
pendulum. Then the applied torque is

�ap= l cos � Fap
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and the velocity at which it is applied is

v= l cos � !

If we fix �ap: [a; b]!R, the differential equations for a trajectory become

�_ = @
@L

H = 1
I
L

L_ = ¡ @
@�

H +Fap(t) l cos �=¡mg l cos �+ �ap(t)

If we let v(t)= l cos � �_(t), then a solution to these differential equations is a trajectory compatible
with (�ap; !): [a; b]!B.

One natural question to ask about port-Hamiltonian systems is what is the correct notion of
morphism between them. To answer this, we must think about what one might want to accom-
plish with a morphism of port-Hamiltonian systems. One such goal could be �simplifying� a port-
Hamiltonian system. That is, suppose that a port-Hamiltonian system consisted of two parts that
did not interact with each other, and that only one of the parts interacted with the interface. Then
from the perspective of the interface, we could drop the non-interacting part.

There likely could be other definitions of morphisms between port-Hamiltonian systems, but
the following notion is at least useful in the above regard, and we do not consider other types of
morphism. To our knowledge, the following definition and the propositions depending on it are
original to this thesis, however it is similar in spirit to work from Barbero-Linam [67].

Definition 6.16. If (X;H;D) and (X 0;H 0;D 0) are port-Hamiltonian systems on the same inter-
face B, then a forwards morphism between them is a smooth map f :X!X 0 such that

1. H =H 0 � f

2. For every x2X, � 2TxX, '2Tf(x)� X 0, b2B,

(�; f�'; b)2Dx) (f� �; '; b)2Df(x)0 (6.7)

The following proposition shows that we can �push forwards� trajectories of port-Hamiltonian
systems along theses morphisms.

Proposition 6.17. Suppose that (X;H; D) and (X 0; H 0; D 0) are port-Hamiltonian systems on
the same interface B, and f :X!X 0 is a forwards morphism between them. Then fix a map b:
[a; b]!B, and let : [a;b]!X be a trajectory of (X;H;D) compatible with b. Then f � : [a;b]!X 0

is a trajectory of (X 0;H 0; D 0) compatible with b.

Proof. We must show that for every t2 [a; b],

((f � )0(t);dH 0(f((t))); b(t))2Df((t))0

By the assumption that  is a trajectory of (X;H;D) compatible with b, we have

( 0(t); dH((t)); b(t))2D(t)

Now, as H =H 0 � f ,
dH((t))=d(H 0 � f)((t))= f�(dH 0(f((t))))

Thus, we can rewrite (6.17) as

( 0(t); f�(dH 0(f((t)))); b(t))2Df((t))0

If we let '=dH 0(f((t))), �=  0(t), and recall that (f � )0(t)= f�( 0(t)), then (6.7) implies that

((f � )0(t);dH 0(f((t))); b(t))2Df((t))0
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as required. �

We would like to now form a category of port-Hamiltonian systems. To do this, we must show
that forwards morphisms of port-Hamiltonian systems compose.

Proposition 6.18. Suppose that (X;H;D), (X 0;H 0;D 0) and (X 00;H 00;D 00) are all port-Hamilto-
nian systems on the same interface B, and that f :X!X 0 and g:X 0!X 00 are forwards morphisms
between them. Then (g � f):X!X 00 is also a forwards morphism.

Proof. Clearly property 1 holds. Now, suppose that

(v; (g � f)�'; b)2Dx

Then by property 2 for f ,

(f� v; g� '; b)2Df(x)
0

and then by property 2 for g,

(g� f� v; '; b)2Dg(f(x))
00

Note that we have implicitly used (g � f)�= g� � f� and (g � f)�= f� � g�. �

Definition 6.19. For a bond space B, let pH(B) be the category where the objects are port-
Hamiltonian systems on B and the morphisms are forwards morphisms.

We can now express the content of Proposition 6.17 as defining a functor.

Definition 6.20. Let B be a bond space, and fix a smooth function b: [a; b]!B. Then define a
functor Trajb:pH(V )! Set by

Trajb(X;H;D) = f: [a; b]!X j  is compatible with bg
Trajb(f : (X;H;D)! (X 0;H 0; D 0)) =  7! f � 

7. Operads

7.1. Operads
Composing functions is quite straightforward. Functions have a well-defined �input� and �output�,
and if the output of one function matches up with the input of another, they can be composed.
We can represent the composition of functions using a category.

However, composing physical systems is not so simple. A physical system does not necessarily
have an �input� and an �output�. Moreover, we don't necessarily want to only think about com-
posing two physical systems at a time: we might want to compose many! So then what is the
mathematical structure by which we can represent composition of physical systems?

One answer lies in choosing parts of the system to consider as the input and output, and then
composing systems as morphisms in a category. Then various structures in the category allow one
to �twist around� inputs to outputs and vice-versa. This idea has been formalized with decorated
cospans and structured cospans; see Fong [68], Baez and Courser [43], and Baez, Courser, and
Vasilakopolou [69].

In this thesis, we take a different approach to this problem, which makes the following tradeoff.
We do not have to choose inputs and outputs for systems. However, we do have to choose how we
compose systems; there is no longer any sort of canonical composition. This approach comes from
the theory of operads and operad algebras. To understand how this works, we make the following
analogy to group actions.

Definition 7.1. If G is a group, and X is a set, then a group action of G on X is a group
homomorphism from G into the group of bijections from X to X.
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One can think of a group as a description of abstract symmetries. For instance, the group Z/7
describes sevenfold symmetry. And then a group action provides the thing that actually has that
symmetry, along with how that symmetry works.

Analogously, operads provide a description of �abstract composition operations.� Then an
operad algebra provides something for those composition operations to act on, and a descrip-
tion of how those composition operations work. Without further vagueries, we plunge into the
formal definition.7.1

Definition 7.2. An operad O consists of

� A collection of types O0
� For every X1; : : : ; Xn; Y 2O0, a collection of operations O(X1; : : : ; Xn;Y )

along with

� For every type X, an operation 1X 2O(X;X) called the identity operation

� For every tuple of types X1; : : : ; Xn, Y1; : : : ; Ym, Z, i2f1; : : : ;mg, a composition map

�i:O(X1; : : : ; Xn;Yi)�O(Y1; : : : ; Ym;Z)!O(Y1; : : : ; Yi¡1; X1; : : : ; Xn; Yi+1; : : : ; Ym;Z)

� For every tuple of types X1; : : : ; Xn, Y, and every permutation � 2Sn, a symmetry map

��:O(X1; : : : ; Xn;Y )!O(X�(1); : : : ; X�(n);Y )

such that several laws hold. It is quite an ordeal to write down these laws, so we instead explain
how they are derived using some graphical principles, and refer the reader to Leinster [ 70] for the
details.

There are multiple different ways of drawing operations in an operad, but we start with just
one for now. We call this �tree notation�, and in tree notation an operation f 2O(X1; X2; X3; Y )
would look something like this:

Y

f

X3X2X1

The reader might be thinking that this looks somewhat similar to string diagram notation,
and there is in fact a connection here that we get into soon. Composition of multiple operations is
performed simply by stacking multiple trees on top of each other, so that if f 2O(X1;X2;Y2) and
g 2O(Y1; Y2; Y3;Z), their composition f �2 g looks like the following:

Z

g

Y3
f

X2X1

Y1

=

Y

f ◦2 g

Y3X2X1Y1

Associativity of composition means that it does not matter in what order we stack trees. This
is implied naturally by the tree syntax. The following tree could either represent (h �2 f) �2 g, or
h �3 (f �2 g); it is a law that both of these must be equal.

7.1. Note that when we say �operad� we always mean the multi-colored version of operads, also called symmetric
multicategories; if the reader has not encountered operads before they can safely disregard this footnote.
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Z

g

Y3
f

h

W2W1

X1

Y1

The composite is also independent of whether we stack trees on top of each other, or compose
�in parallel�, i.e. it does not matter which of f or f 0 we stack first in the following tree

Z

g

f ′

X ′
2X ′

1

Y2
f

X2X1

Just as in string diagrams, we draw the identity as a plain wire, that is

X

1X

X

=

X

X

Composing with the identity leaves whatever you had unchanged.
There are in fact two different ways of defining composition in an operad, which are equivalent.

The first is the way that we have already stated, where we compose two operations at a time. This
looks like a function

�i:O(X1; : : : ; Xn;Yi)�O(Y1; : : : ; Ym;Z)!O(Y1; : : : ; Yi¡1; X1; : : : ; Xn; Yi+1; : : : ; Ym;Z)

The second way is that we compose an operation g2O(Y1; : : : ; Yn;Z) with n operations simultan-
iously, i.e. with f12O(X1;1;:::;X1;k1;Y1);:::; fn2O(Xn;1;:::;Xn;kn;Yn). This looks like a function

�:O(Y1; : : : ; Yn;Z)�O(X1;1; : : : ; X1;k1;Y1)� � � � �O(Xn;1; : : : ; Xn;kn;Yn)!O(X1;1; : : : ; Xn;kn;Z)

We write the composition of f1; : : : ; fn with g as g � (f1; : : : ; fn).
These two ways of defining composition are equivalent, because we can define the second

composition using the first simply by applying the first composition multiple times, and we can
define the first composition using the second by putting in identities in all of the slots except for
the ith slot.

The first type of composition is more flexible in practice, because it is often the case that we
want to only compose two operations. However, the second type of composition can often be easier
to work with mathematically. We use both types of composition.

Finally, also have some laws for the symmetry map. Specifically, for �; � 2Sn, (� � �)�=��� ��
(consequently �� is a bijection). Moreover for g 2O(Y1; : : : ; Yn;Z), and fi2O(Xi;1; : : : ; Xi;ki;Yi)

(��g) � (f1; : : : ; fn)= ��(g � (f1; : : : ; fn))
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where � 2SP
i=1
n ki is the permutation that swaps the ki-sized blocks in f1; : : : ;

P
i=1
n

kig according
to �. Thus, the symmetry map respects composition.

Definition 7.3. If an operad O has only one type, we call it a single-colored operad. In this
case, we refer to the set of n-ary operations with On. That is, if the single type is X, then

On=O(X; : : : ;X|||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
n

;X)

Example 7.4. The operad of convex combinations, which we write as CC, is a single-colored
operad with

CCn=

(
(�1; : : : ; �n) j�i2 [0; 1];

X
i=1

n

�i=1

)
Composition is defined in the following way. Suppose that (�1; : : : ; �n)2 CCn, and that (1;1; : : : ;
1;k1)2CCk1; : : : ; (n;1; : : : ; n;kn)2CCkn. Then let

(�1; : : : ; �n) � ((1;1; : : : ; 1;k1); : : : ; (n;1; : : : ; n;kn))= (�1 1;1; : : : ; �n n;kn)2CCPi=1
n ki

We think of an operation in this operad as being a recipe for how to mix n ingredients. That is,
we take �1 of the first ingredient, �2 of the second ingredient, and so on. Then we can think of
composition saying that we are going to take �1 of the result of the recipe (1;1; : : : ; 1;k1), �2 of
the result of the recipe (2;1; : : : ; 1;k2), and this is the same as taking �1 1;1 of the first ingredient
of the first recipe, �2 2;1 of the first ingredient of the second recipe, and so on.

To prove directly that something is an operad can be a somewhat tedious affair. Fortunately,
we have a construction that does most of the heavy lifting for us.

Proposition 7.5. If (C;
; I) is a symmetric monoidal category, then we can build an operad
which we call Op(C) in the following way.

� Let Op(C)0=C0, so that a type in Op(C) is an object in C

� For X1; : : : ; Xn; Y 2Op(C)0, let

Op(C)(X1; : : : ; Xn;Y )=HomC(X1
 � � � 
Xn; Y )

If g 2Op(C)(Y1; : : : ; Yn;Z) and fi2Op(C)(Xi;1; : : : ; Xi;ki;Yi), then we define

g � (f1; : : : ; fn)= g � (f1
 � � � 
 fn)

The identity operations are given by the identity morphisms. Finally, the action of � 2 Sn on
operations is given by composing with the braiding.

Proof. See Leinster [70, Chapter 2]. �

7.2. Finite cospans and wiring diagrams
In this section, we give an extended discussion on the operad of undirected wiring diagrams.
Undirected wiring diagrams are widely used to describe the interconnection of systems, and are
a very well-studied operad. We do not use them directly in this paper, but they have indirectly
influenced our approach to a great extent. The reader is encouraged to peruse Spivak [10], Yau
[71], Vagner [72], Fong [12], and Libkind [9] for more information on the subject.

Consider the following symmetric monoidal category, which we call FinCospan. The construction
of this category is dual to the construction of span categories, as discussed in Definition 2.34. The
objects of this category are finite sets, and a morphism between finite sets A and B is an equivalence
class of cospans, which are diagrams of the form

X

A B

fX gX

where X is a finite set. Two cospans are equivalent if there exists an isomorphism � as in the
following commutative diagram.
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X

A B

X
′

φ

fX gX

g
X′f

X′

We visualize a cospan of finite sets in Figure 7.1.

A

X

B

Figure 7.1. A morphism of FinCospan from A to B

We think of this as providing a description of connections. That is, nodes on the outside that
map to the same inner node are �connected.� Composition of cospans is done via pushout.

X ⊔B Y

X Y

A B C

fX gX fY gY

y

This definition for composition captures the notion that if a2A is connected to b2B, and b is
conneted to c2C, then a should be connected to c when the two connection schemes are merged.
We draw this as in Figure 7.2.

A

X

B

Y

C

+

A C

X tB Y

Figure 7.2. Composition of finite cospans
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In analogy to Definition 2.34, we need to consider equivalence classes of cospans in order for
composition to be well-defined, as pushout is defined only up to natural isomorphism.

We then put a monoidal structure on FinCospan via disjoint union. Given two cospans

A1!!!!!!!!!!!!!!!!!!!!!!!!!!
fX1

X1                          
gX1

B1; A2!!!!!!!!!!!!!!!!!!!!!!!!!!
fX2

X2                          
gX2

B2

their monoidal product is

A1+A2!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
fX1+fX2

X1+X2                                                                  
gX1+gX2

B1+B2

which we visualize as in Figure 7.3.

+ =

Figure 7.3. Monoidal composition of finite cospans

All of the required natural isomorphisms for this to be a symmetric monoidal product come from
the fact that the category FinSet of finite sets and functions between them is a wide subcategory
of FinCospan via the functor that sends a map f :A!B to the cospan

A!!!!!!!!
f
B                  

1B
B

and this monoidal product is the cocartesian monoidal product for FinSet.
Now, we have a symmetric monoidal category (FinCospan;+;;), and we can build an operad out

of it, Op(FinCospan). We call this operad UWD, which stands for undirected wiring diagrams.
We think of an operation in UWD as providing a description of how several boxes can be wired
together, in an undirected fashion, and also exposing some �external ports.� This corresponds to
the visualization in Figure 7.4

X1

X2

Y

X1

X2
J

Y

Figure 7.4. An undirected wiring diagram, and its underlying cospan X1+X2!J Y of finite sets

In the diagrams for undirected wiring diagrams, composition is drawn by nesting, as pictured
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in Figure 7.5.

X11

X12

X21

Y1

Y2

Z

+
X11

X12

X21

Z

(a) Literal cospan diagram

X12

X11

X21

Y1

Y2

Z

+

X12

X11

X21

Z

(b) Undirected wiring diagram

Figure 7.5. Two ways of drawing how to compose cospans.
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7.3. Dirac relations as an operad

The main operad we use in this paper is built out of the symmetric monoidal category DiracRel
(see section 4.5 for exposition of DiracRel).

Definition 7.6. We define DR to be the operad Op(DiracRel).

We picture operations in this operad using Dirac diagrams. We explain how this works using a
sequence of diagrams. Note that there is not a one-to-one correspondence between Dirac diagrams
and Dirac relations; the same Dirac relation could be pictured in several different ways.

Example 7.7. The simplest Dirac relation is the identity on the bond space B=R�R�. This is
pictured in Figure 7.6 (a). This is an operation that �takes in� something of type B in the smaller
empty box, and produces the exact same thing. Figure 7.6 (b) pictures the identity on the bond
space B� , which has the same underlying space as B but has the opposite power structure. Unless
otherwise specified, bonds in a Dirac diagram represent the bond space B or B� , with the choice
of which given by the directionality.

Note that we use a junction on the border of the outer box to represent the �external� ports.
This allows us, when we compose relations by nesting as in Figure 7.5, to simply erase the box and
be left with a valid Dirac diagram. We give an example of this later.

e f e f

(a) idB (b) idB�

Figure 7.6. The identity Dirac relation as an operation in Op(DiracRel), pictured in Dirac diagram style

Example 7.8. Another simple Dirac relation is \:B� �B9 0 (from Proposition 4.24) pictured
in Figure 7.7. As an operation in DR, this takes two things of type B� and B respectively, and
produces a closed system

e

f

Figure 7.7. Creating a closed system by connecting two boxes.

Example 7.9. There are two ways of connecting two things of type B. One is by inverting efforts,
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and one is by inverting flows. Both are pictured in Figure 7.8. Recall from Chapter 4 that a junction
works by matching the inner color, and summing the outer color. So in Figure 7.8 (a), the efforts
are matched, and the flows are summed. Conversely, in Figure 7.8 (b) the flows are matched and
the efforts are summed.

e

f

e

−f

(a)

e

f

−e

f

(b)

Figure 7.8. Two ways of connecting two things of type B

Example 7.10. In Figure 7.9, we see how the composition of Dirac relations is pictured with
the Dirac diagram syntax for Op(DiracRel). We visualize the setup for composition via nesting
Dirac diagrams. Then to compose, we simply erase the intervening boxes. Optionally, we can then
simplify the diagram, which simply means writing down the same relation in a different way.
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+

+

Figure 7.9. Visualizing composition in Op(DiracRel)

7.4. Operad algebras
If an operad describes ways of composing things, an operad algebra describes a choice of what those
things actually are, and how the ways work to compose them. Just as a group action can be seen as
a homomorphism from a group G to the endomorphism group of a set X , we can also see an operad
algebra as a certain homomorphism. To do this, we must define what a morphism of operads is.

Definition 7.11. If O and O 0 are operads, a morphism F between them consists of

� A type F (X)2O00 for each type X 2O0
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� An operation F (f)2O 0(F (X1); : : : ; F (Xn);F (Y )) for every f 2O(X1; : : : ; Xn;Y )

such that

� if f ; g1; : : : ; gn are composable, then

F (f � (g1; : : : ; gn))=F (f) � (F (g1); : : : ; F (gn))
� for idX 2O(X;X),

F (idX)= idF (X)

� for f 2O(X1; : : : ; Xn;Y ) and � 2Sn,

F (��(f))=��(F (f))2O(F (X�(1)); : : : ; F (X�(n));Y )

Definition 7.12. Let S be the operad Op(Set), where we give Set the cartesian monoidal structure.
So a type in S is a set, and an operation f 2S(X1; : : : ; Xn;Y ) is a function

f :X1� � � � �Xn!Y

Definition 7.13. Let O be an operad. Then an operad algebra F of O is an operad morphism from
O to S. That is, an operad algebra consists of

� A set F (X) for every X 2O
� A function F (f):F (X1)� � � � �F (Xn)!Y for every operation f 2O(X1; : : : ; Xn;Y )

such that the conditions in Definition 7.11 hold.

Example 7.14. Suppose that A�Rn is convex, that is � a+ (1¡ �) a02A whenever a; a02A,
�2 [0; 1]. Then we can make an operad algebra of CC, where the single type of CC is sent to A,
and (�1; : : : ; �n)2CCn is sent to the function An!A defined by

(a1; : : : ; an) 7!�1 a1+ � � �+�n an

Now, in the special case thatO andO 0 are operads derived from symmetric monoidal categories,
a morphisms between them corresponds to a certain type of functor between the categories. Recall
that in section 2.4, we defined three types of functors between monoidal categories: strict monoidal
functors, monoidal functors, and lax monoidal functors. It turns out that lax monoidal functors
correspond to a morphisms of operads, in a way that we make precise in the next proposition.

Recall that a lax symmetric monoidal functor between symmetric monoidal categories (C;
C;
IC) and (D;
D; ID) consists of a functor F :C!D, along with natural transformations

": ID!F (IC)

�X;Y :F (X)
DF (Y )!F (X 
CY )

and coherence conditions that imply that we can form a unique morphism

�X1; : : : ;Xn:F (X1)
D � � � 
DF (Xn)!F (X1
C � � � 
CXn)

for every X1; : : : ; Xn2C.

Definition 7.15. Suppose that (C;
C; IC) and (D;
D; ID) are symmetric monoidal categories,
and (F ; "; �) is a lax monoidal functor between them. Then define Op(F ), an operad morphism
between Op(C) and Op(D), by

� On types F 2Op(C)0=C0, define
Op(F )(X)=F (X)

� On operations f 2Op(C)(X1 : : : ; Xn;Y )=HomC(X1
C � � � 
CXn; Y ), define

Op(F )(f)=F (X1)
D � � � 
DF (Xn)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
�X1; : : : ;Xn

F (X1
C � � � 
CXn)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !F (f)
F (Y )

Proposition 7.16. The previous definition makes Op into a functor from SMC, the category of
symmetric monoidal categories and lax monoidal functors between them, to Op, the category of
(symmetric) operads and operad morphisms between them.
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Proof. See Leinster [70] Chapter 2. �

Corollary 7.17. If F is a lax symmetric monoidal functor from a SMC (C;
; I) to (Set;�; 1),
we can construct an operad algebra Op(F ) of Op(C).

7.5. Open graphs as an operad algebra of undirected wiring diagrams
In general, algebras of the operad of undirected wiring diagrams are all about �gluing together�
things. Such algebras are also known as cospan-algebras, and have been studied in depth in Fong
and Spivak [73]. One of the simplest things that we can glue together is graphs. In this example,
we work out precisely what this means.

Definition 7.18. A graph G is a functor from the category

Gr := E V

src

tgt

into FinSet. That is, a graph consists of

� A finite set of vertices G(V )

� A finite set of edges G(E)

� A source map G(src):G(E)!G(V )

� A target map G(tgt):G(E)!G(V )

a

b

c
d

w

x

yz

a

b

c

d

w

x

y

z

G(E) G(V )

Figure 7.10. A graph along with its representation as a functor. The blue arrows represent the source
mapping and the red arrows represent the target mapping.

See Figure 7.10 for an example graph, along with a more abstract representation in as a functor
into FinSet.

Definition 7.19. An open graph with interface X is a graph G along with a map �:X!G(V ).
We call � the interface map.

We think of � as picking out the �external� vertices of G. An example open graph is pictured
in Figure 7.11.

a

b

c
d

w

x

yz

a

b

c

d

w

x

y

z

p1

p2

p3

G(E)

G(V )

X

Figure 7.11. An open graph, pictured as a graph and as a mapping of sets.
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We make open graphs into an operad algebra of operad of wiring diagrams by constructing
a lax symmetric monoidal functor OpenGr from FinCospan to Set in the following way. For a
finite set X, we let OpenGr(X) be the set of equivalence classes of open graphs with interface
X , where we declare that two open graphs isomorphic in a way that respects the interface maps
are equivalent. Discussion of this process of taking equivalence classes can be found in Baez and
Pollard [74, Theorem 6]. Then, if G is an open graph on X, and f :X!Z Y : g is a cospan, we
define OpenGr(f ; g)(G) using the following diagram.

V
′

G(E) G(V ) Z

X Y

f
ι gG(tgt)

G(src)

q1 q2y

We then let

OpenGr(f ; g)(G)(V ) = V 0

OpenGr(f ; g)(G)(E) = G(E)
OpenGr(f ; g)(G)(src) = q1 �G(src)
OpenGr(f ; g)(G)(tgt) = q1 �G(tgt)

Finally, the interface map from Y to OpenGr(f ; g)(G)(V ) is simply q2 � g. The idea here is that
vertices in the graphs are �glued together� by the cospan.

The laxator � for OpenGr simply takes the disjoint union of graphs. That is, if G is an open
graph on X and G0 is an open graph on X 0, then GtG0 is naturally an open graph on X tX 0,
and from this we get

�:OpenGr(X)�OpenGr(X 0)!OpenGr(X tX 0)

When we put this all together, we get to compose graphs using undirected wiring diagrams.

)

Figure 7.12. Composition of open graphs using undirected wiring diagrams.

7.6. Higher operad algebras
The mantra of categorification says to replace sets with categories. We can do this in the definition
of an operad algebra by replacing the operad morphism into S=Op(Set) with an operad morphism
into C =Op(Cat), where Cat has the symmetric monoidal structure given by cartesian product.
When this happens, we must weaken the laws to only hold up to natural isomorphism in the
categories.
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We as of yet do not know precisely the correct definition of �higher operad� and �higher operad
algebra� that would allow for this weakened notion of operad algebra. However, in the special case
where the operad comes from a symmetric monoidal category, and the algebra comes from a lax
symmetric monoidal functor, the correct type of �weakening� has been studied, and is called a lax
symmetric monoidal pseudofunctor. This generalization to lax symmetric pseudofunctors allows
the coherence conditions for the lax symmetric monoidal structure on the functor only to have
to hold up to natural isomorphism. It is not worth going over the details of this before we see
it in use, because it makes the most sense in context. The definition of lax symmetric monoidal
pseudofunctors was originally given in Street and Day [75], and was recently used in Baez, Courser
and Vasilakopoulou [69] in order to formalize a �higher� notion of decorated cospans.

8. Composition of Port-Hamiltonian Systems

8.1. Definitions
Finally, we have laid all of the ground-work to compose port-Hamiltonian systems. As said before,
we compose port-Hamiltonian systems by means of the theory of operads and operad algebras.
However, as noted before, our approach is only �operad-inspired�, as we do not yet have a notion
of higher operad for which a lax symmetric monoidal pseudofunctor produces a higher operad
algebra. Thus, the main goal of this chapter is simply to lay out a sketch of how to construct a
lax symmetric monoidal pseudofunctor from DiracRel to Cat. This will only be a sketch because we
have not as of yet proved the higher coherence conditions required for a lax symmetric monoidal
pseudofunctor. We then explain how this functor models composition of port-Hamiltonian systems
by giving several examples.

The fundamental idea for how to compose port-Hamiltonian systems has been understood on
a non-categorical level for a while, for instance in van der Schaft and Jeltsema [14, Chapter 6], or
van der Schaft and Maschke [76]. Our contribution is to systematize what it means to compose
port-Hamiltonian systems, in the same way that the idea of a group systematizes what it means
to compose symmetries.

Now, to make the functor from DiracRel to Cat, recall Definition 6.19 of the category pH(B) for
a bond space B. We now extend pH into a lax symmetric monoidal functor from DiracRel to Cat.
First, we define the action of pH on morphisms of DiracRel, i.e. Dirac relations.

Construction 8.1. If B and B 0 are bond spaces, and R:B9B 0 is a Dirac relation between them,
define pH(R):pH(B)! pH(B 0) in the following way.

� On objects (X;H;D)2 pH(B) (which are port-Hamiltonian systems on the interface B),
define

pH(R)(X;H;D)= (X;H;Triv(R) �D)

where TrivX:DiracRel!DiracRel(X) is as defined in 5.45.
This is a port-Hamiltonian system on the interface B 0 because

D 2DiracRel(X)(TX �T �X;Triv(B))

and

TrivX(R)2DiracRel(X)(Triv(B);Triv(B 0))
so

TrivX(R) �D 2DiracRel(X)(TX �T �X;Triv(B 0))

as required for (X;H;TrivX(R) �D) to be a port-Hamiltonian system on the interface B 0.

� On forwards morphisms f : (X;H;D)! (X 0;H 0;D 0), pH(R) is just the identity. To see why
this works, recall from Definition 6.16 that a forwards morphism f : (X;H;D)! (X 0;H 0;D 0)
is a smooth map f :X!X 0 such that

1. H =H 0 � f

Owen Lynch 77



2. For every x2X, � 2TxX, '2Tx�X, b2B,

(�; f�'; b)2Dx) (f� �; '; b)2Df(x)0

Well, upon inspection, such a map f :X!X 0 is also a forwards morphism

f : (X;H;Triv(R) �D)! (X 0;H 0;Triv(R) �D 0)

To see why, first of all property 1 clearly still holds. Moreover, for any x 2X; � 2 TxX;
'2Tx�; b02B 0, if

(�; f�'; b0)2 (Triv(R) �D)x=R �Dx

then there exists b2B such that (b; b0)2R, and

(�; f�'; b)2Dx

Thus,

(f� �; '; b)2Df(x)0

But then, as (b; b 0)2R,
(f� �; '; b0)2R �Df(x)0

as required. As pH(R) is the identity on morphisms, it clearly respects composition, and so
pH(R) is a functor.

Proposition 8.2. As defined above, pH is a functor from DiracRel to Cat.

Proof. We must show that for R:B19B2, R0:B2!B3, pH(R0)�pH(R)=pH(R0�R). To see this,
on objects of pH(B1) we have

(pH(R0) � pH(R))(X;H;D) = pH(R0)(X;H;Triv(R) �D)
= (X;H;Triv(R0) �Triv(R0) �D)
= (X;H;Triv(R0 �R) �D)
= pH(R0 �R)(X;H;D)

On morphisms of pH(B1), pH(R0)�pH(R) and pH(R0�R) are both the identity, so they are clearly
equal. We are done. �

It turns out that pH is in fact a strict functor. The reason why we treat it as a pseudofunctor,
however, is that the lax symmetric monoidal structure that we put on it is be weakened in an
appropriate way.

We now put a lax symmetric monoidal structure on pH. To do this, we must define morphisms
": 1! pH(B0) (where 1 is the terminal category), �B;B 0: pH(B)� pH(B 0)! pH(B �B 0), show
that they are natural, and then finally show that they obey the coherence conditions for making
(pH; "; �) into a lax symmetric monoidal pseudofunctor. The proof that these obey the coherence
conditions will only be a sketch.

Construction 8.3. Define ": 1! pH(B0) by sending the single element of 1 to the port-Hamil-
tonian system (R0; 0; D), where D is the trivial relation between TR0�T �R0 and TrivX(B0).

For bond spaces A;B, define

�A;B:pH(A)� pH(B)!pH(A�B)

by sending a pair ((XA; HA; DA); (XB;HB; DB)) of port-Hamiltonian systems on A and B respec-
tively to the port-Hamiltonian system

(XA�XB;HA+HB; DA�DB)

which is a port-Hamiltonian system on the interface A�B. Here HA+HB:XA�XB!R is defined
by

(HA+HB)(xA; xB)=HA(xA)+HB(xB)
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and DA�DB is defined by taking the isomorphisms

T (XA�XB)�T �(XA�XB)=� (TXA�T �XB)� (TXA�T �XB)
and

TrivXA(A)�TrivXB(B)=�TrivXA�XB(A�B)
and composing them with

DA�DB� (TXA�T �XA�TrivXA(A))� (TXB�T �XB�TrivXB(B))
to get

DA�DB�T (XA�XB)�T �(XA�XB)�TrivXA�XB(A�B)

Confusingly enough, note that that this is not the direct product in DiracRel(X) for some X, because
because DA and DB are bundles over different manifolds. However, the fibers of this bundle are in
fact the direct product of the fibers of DA and DB.

Now, we are only halfway done here, because �A;B must be a functor. It is quite easy to define
�A;B on morphisms, however, namely

�A;B(f :XA!XA
0 ; g:XB!XB

0 )= f � g:XA�XB!XA
0 �XB0

This is easily shown to be a forwards morphism of port-Hamiltonian systems.

Proposition 8.4. � is a natural transformation.

Proof. This proof is difficult because there are a lot of definitions to unpack, but once we have
laid everything out it is fairly straightforward. We want to show that � is a natural transformation
between two functors that go from DiracRel�DiracRel to Cat. Thus, to show the naturality square,
we must consider a morphism in DiracRel�DiracRel. Consider four bond spaces A, A0, B, B 0, and
two Dirac relations RA:A9A0 and RB:B9B 0. (RA; RB): (A; B)9 (A0; B 0) is a morphism in
DiracRel�DiracRel. We must show that the following square commutes:

pH(A)× pH(B) pH(A⊕B)

pH(A′)× pH(B′) pH(A′
⊕B

′)

pH(RA)×pH(RB)

µA,B

pH(RA⊕RB)

µA′,B′

Now, as the action of pH on morphisms is the identity, and the action of � is cartesian product,
this diagram commutes on morphisms. Thus, we must only check objects. Consider two port-
Hamiltonian systems (XA;HA; DA) and (XB;HB; DB). Following the upper path, we get

�A;B((XA;HA; DA); (XB;HB; DB))= (XA�XB ;HA+HB; DA�DB)

And then pH(RA�RB) sends this to

(XA�XB;HA+HB;TrivXA�XB(RA�RB) � (DA�DB))

Following the lower path, we get

pH(RA)�pH(RB)((XA;HA; DA); (XB;HB ; DB))
= ((XA;HA;TrivXA(RA) �DA); (XB ;HB;TrivXB(RB) �DB))

And then

�A0;B 0((XA; HA;TrivXA(RA) �DA); (XB;HB ;TrivXB(RB) �DB))
= (XA�XB;HA+HB; (TrivXA(RA) �DA)� (TrivXB(RB) �DB))

Thus, the commutativity of the square reduces to checking that

TrivXA�XB(RA�RB) � (DA�DB)= (TrivXA(RA) �DA)� (TrivXB(RB) �DB)

This can be checked fiberwise, using the interchange law from the fact that � is a functor from
DiracRel�DiracRel to DiracRel. We are done. �

In the next proposition, we sketch the proof that (pH; "; �) satisfies the coherence conditions.
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Conjecture 8.5. � and " satisfy the coherence conditions for (pH; "; �) to be a lax symmetric
monoidal pseudofunctor.

Proof. Recall the coherence conditions from section 2.4. The associativity diagram is

(pH(A)× pH(B))× pH(C) pH(A) × (pH(B) × pH(C))

pH(A⊕B)× pH(C) pH(A) × pH(B ⊕ C)

pH((A⊕B)⊕ C) pH(A⊕ (B ⊕ C))

apH(A),pH(B),pH(C)

1pH(A)×µB,C

µA,B⊕C

µA,B×1pH(z)

µA⊕B,C

pH(aA,B,C)

the diagrams for the left and right unitors are

1× pH(B) pH(B0)× pH(B)

pH(B) pH(B0
⊕B)

ǫ×1pH(B)

lpH(B)

pH(lB)

µ
B0,B

and
pH(B) × 1 pH(B)× pH(B0)

pH(B) pH(B ⊕ B
0)

1pH(B)×ǫ

µ
B,B0

pH(rB)

rpH(B)

and finally, the diagram for symmetry is

pH(A)× pH(B) pH(B)× pH(A)

pH(A⊕B) pH(B ⊕A)

µA,B

BpH(A),pH(B)

µB,A

pH(BA,B)

To sketch the proof that (pH; "; �) is a lax symmetric monoidal pseudofunctor, we must argue
that these diagrams commute up to natural isomorphism, and moreover that the natural isomor-
phisms filling these diagrams themselves satisfy certain coherence conditions. We will argue this
as follows. Recall the definition of the laxator �A;B:

((XA;HA; DA); (XB;HB ; DB)) 7! (XA�XB ;HA+HB ; DA�DB)

This is composed of three operations: cartesian product of manifolds, sum of functions, and direct
product of relations. Intuitively, these operations are associative, unital with respect to ", and
symmetric, and this is what the diagrams are saying. However, note that the cartesian product of
manifolds is only weakly associative, unital, and symmetric.

We go through exactly what this means in the case of the diagram for symmetry. If we chase
the symmetry diagram starting with an element of pH(A)� pH(B), we get the following:

(XA, HA, DA), (XB , HB, DB) (XB, HB, DB), (XA, HA, DA)

(XB ×XA, HB +HA, DB ⊕DA)

(XA ×XB, HA +HB, DA ⊕DB) (XA ×XB, HA +HB,TrivXA×XB
(BA,B) ◦DA ⊕DB)

∼=

Recall that BA;B:A�B9B�A is the braiding . The isomorphism in the above diagram is the
function XA�XB!XB �XA sending (xA; xB) to (xB; xA). This is a forwards morphism of port-
Hamiltonian systems on B �A.

The cases of associativity and unitality are directly analogous; when the diagrams are chased,
they need to be completed with isomorphisms, i.e. (XA�XB)�XC=�XA� (XB�XC) and R0�
XB=�XB=�XB�R0.
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We then expect that coherence of the isomorphisms making these squares commute will be a
consequence of the fact that � is coherently associative, unital, and symmetric, but we have not
as of yet supplied a detailed proof for this. �

At this point, we would like to cite an analogue of Corollary 7.17, and show that this defines
some sort of operad algebra of Op(DiracRel). However, we as of yet do not know the higher notion
of operad algebra that this would work with. Thus, in lieue of this, we give some examples of how
the composition with this operad works.

8.2. Examples of composition

Example 8.6. In this example, we model a motor and flywheel system, pictured in Figure 8.1.
In this system, a flywheel is connected to a motor. There is an input port that carries electrical
power, and an output port that carries rotational power. Recall that �input� here refers to a sign
convention, not a causality convention; this same system could be �run backwards� to produce
electrical power from rotation power.

We now describe the parts of the system. The motor transforms electric power, in the form of
voltage V and current I, into rotational power, in the form of torque � and rotational velocity !.
Mathematically, this is given by the relation

! = �V

� � = I

In other words, the rotational velocity is proportional to the input voltage, and the torque is
proportional to the current. The electric motor has no state.

Then, we attach the electric motor to a flywheel, whose state is its rotational momentum. That
is, the state is X =R, and the Hamiltonian is

H(L)= 1
2 Irot

L2

where Irot is the moment of inertia of the flywheel (it is unfortunate that there are so few letters in
the English language, and that different domains of physics have conflicting uses for those letters;
I is used for current and also moment of inertia). Then the kinematic equations for the flywheel are

L_ = � 0

! = @H
@L

= 1
Irot

L

The electric motor, the flywheel, and the output are all on one shaft, so their rotational velocities
are all the same; this is enforced by a flow-matching, effort-summing junction (torque is effort,
rotational velocity is flow).

motor

flywheel

τ
ω

τ ′ ωτ ′ ω

τ − τ ′ ω

V

I

Figure 8.1. Dirac diagram for a motor and flywheel.
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Example 8.7. In this example, we consider a pumping system. The main component of the
pumping system is a pump, which uses rotational power from an external port (perhaps from the
electrical motor in Example 8.6) to move water from a tank at pressure p0 to a tank at pressure
p1. This is governed by the equations

p1¡ p0= � �

f = 1
�
!

for some constant �. That is, the difference in pressure is proportional to the torque exerted, and
the flow through is proportional to the rotational velocity.

The tanks themselves are simple storage systems, analogous to capacitors. The tanks can also
be filled and emptied from the outside, using the right and left ports.

tank 0

pump

tank 1

τ ω

p0

f

p0 fin − f

p0

fin

p1

f

p1 f − fout

p1

fout

Figure 8.2. Dirac diagram for a pumping system.

Example 8.8. In this example, we consider a toy hovercar. The hovercar consists of a body with
mass, gliding on a frictionless surface with two fans mounted on it, with power to the fans supplied
by external wires, and is pictured in Figure 8.3. The point of this example is to demonstrate a
non-linear state-dependency in a port-Hamiltonian system.

The configuration space of the hovercar is Q=R2�S1, i.e. a position r and orientation �. The
state space then is X =T �Q. The Hamiltonian is

H(r; �; p; L)= 1
2m
jpj2+ 1

2 I
L2

where m is the mass of the hovercar, and I is the moment of intertia. The interface is B2, with
coordinates (vx; vy; Fx; Fy). Then the kinematic equations for the hovercar are the following:

r_ = @H
@p

= 1
m
p

�_ = @H
@L

= 1
I
L

p_ =
�
Fx cos �
Fx sin �

�
L_ = RFy

vx = r_x cos �+ r_y sin �
vy = R�_

Thus, force in the x direction causes the hovercar to move forwards or backwards in the current
direction that the hovercar is facing, and force in the y direction causes the hovercar to rotate.
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We then supply this force to the hovercar via the fans. We will leave it to the reader to give a
specification for the fans; one could include the rotational inertia of the fan blades here, or simply
have a stateless conversion from the electrical domain to the mechanical domain.

The interconnection of these parts is then pictured in Figure 8.4.

Figure 8.3. Schematic of a hovercar.

x fan

body

y fan
V0

I0

V1

I1

(Fx, 0)

(vx, 0)

(0, Fy)

(0, vy)

(Fx, Fy) (vx, vy)

Figure 8.4. Dirac diagram for a hovercar.

9. Convex Spaces

9.1. Convex spaces

This chapter stands alone from most of the previous chapters in this thesis, and only depends
on Chapter 2. If the reader has gotten lost in operads and manifolds and Dirac diagrams, we
welcome the reader into something quite different, and hopefully refreshing. However, it is necessary
background material for the later chapter on thermostatics, where we use convex spaces as state
spaces for systems and we use the theory of operad algebras to compose these systems.

The material in this chapter and in the next chapter can be found in Baez, Lynch, and Moeller
[1], but we do not go over it in as much detail as in that paper. Rather, we give a �sparse�
presentation, showing that we can with not too much effort apply the theory of operads and operad
algebras to an entirely different domain.
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We start by introducing a generalized conception of �convex space.� Recall that if V is a vector
space, a convex subset of V is a subset U � V such that for all u1; u2 2U , and for all � 2 [0; 1],
�u1+(1¡�)u22U . The following notion treats this operation abstractly, without an underlying
vector space. As the properties of a convex space are listed, the reader should note that they hold
for the special case of a convex subset of a vector space.

Definition 9.1. A convex space is a set X along with a function c�:X�X!X for every �2 [0;1]
such that the following properties hold.

� For all x; y 2X, c1(x; y)=x

� For all x2X, �2 [0; 1] c�(x; x)=x

� For all x; y 2X, �2 [0; 1], c�(x; y)= c1¡�(y; x)In this chapter,

� For all x; y; z 2X, �; ; � 2 [0; 1] such that � (1¡ )= (1¡� ) �,

c�(c(x; y); z)= c�(x; c�(y; z))

Example 9.2. Any vector space V is a convex space, with

c�(v1; v2)=� v1+(1¡�) v2
for v1; v22V , �2 [0; 1].

Example 9.3. If X is a convex space, and U �X is such that whenever x; y 2U , c�(x; y)2U ,
then c� puts a convex structure on U , and we call U a convex subpace of X . As a sub-example
of this, any subset of a vector space closed under convex combinations is a convex space.

Example 9.4. As a further subexample of Example 9.3, the n-simplex

�n=

(
p2Rn+1

����������pi� 0;X
i=1

n

pi=1

)

is a convex subset of Rn+1, representing the set of discrete probability distributions on n+ 1
elements.

Example 9.5. As a further subexample of Example 9.3, the positive orthant

R>0
n = fx2Rn jxi> 0g

is a convex subset of Rn.

Example 9.6. Suppose that (A; _) is a commutative semilattice, that is _:A�A!A is a
binary operation such that

� a_ a= a

� a_ b= b_ a

� a_ (b_ c)= (a_ b)_ c

Then we can put a convex structure on A by defining

c�(a; b)=

8<: a if �=0
b if �=1
a_ b otherwise

Examples of this type show that convex spaces are more general than �convex subsets of a vector
space.�
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Example 9.7. The extended reals R� =R[f+1;¡1g have a convex structure uniquely specified
by the following equations

c�(x; y) = �x+(1¡�) y for x; y 2R
c�(x;+1) = +1 for x2R
c�(x;¡1) = ¡1 for x2R
c�(¡1;1) = ¡1

for �2 (0;1). This convex structure is a �blend� of Examples 9.3 and 9.6. Note that we have �biased�
our definition towards ¡1; we could have also biased towards +1 but for what we do in Chapter
10, this is the physically-relevant definition.

9.2. Morphisms of convex spaces

Definition 9.8. A convex-linear map from a convex space X to a convex space Y is a function
f :X!Y such that

f(c�(x; x0))= c�(f(x); f(x0))

for all x; x02X and all �2 [0; 1].

Definition 9.9. We define Conv to be the category of convex spaces and convex-linear maps.

Proposition 9.10. Conv is a regular category.

Proof. Convex spaces are models of an algebraic theory [77], [78]. �

Definition 9.11. As Conv is a convex category, we can make its category of relations, via Con-
struction 2.49. We call this ConvRel, and it has a natural symmetric monoidal structure given by
Proposition 2.51.

We expand this definition of ConvRel for the sake of clarity.

Definition 9.12. A convex relation between a convex space X and a convex space Y is a convex
subspace R�X � Y. ConvRel is the category of convex spaces and convex relations, where we use
the standard definition for composition of relations.

In addition to convex-linear maps and convex relations, we consider a third type of map: concave
maps.

Definition 9.13. Suppose that X is a convex space, and Y is a convex space with a partial ordering
on it. Then a concave map f :X!Y is a function such that for all x; x02X,

f(c�(x; x0))� c�(f(x); f(x0))

We only really consider concave maps into R� with the natural ordering on it.

Example 9.14. The natural logarithm, log: (0;+1)!R� ; is a concave map. In fact, we can extend
log to [0;1] by defining it to be ¡1 at 0 and +1 at +1, and it is still concave.

We see plenty more examples of concave maps in the next chapter.

10. Thermostatics

10.1. Thermostatic systems
In this chapter, we give an overview of what we call thermostatic systems. These are models of
thermodynamical systems that allows us to answer questions about equilibrium (i.e. static points).
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In thermostatics, questions about equilibrium are be answered by constrained maximization
of entropy . We talked about this in Section 1.3; the reader is advised to reread this section if it
has been a while. The following definition formalizes exactly what we need to answer questions of
equlibrium for thermodynamical systems.

Definition 10.1. A thermostatic system consists of a convex space X along with a concave
function S:X!R� , which we call the entropy function.

Example 10.2. The state space of a classical chemical system is X=R>0
n+2, with two coordinates

U and V representing total energy and volume, and then n coordinates N1; : : : ; Nn representing
amounts of various chemicals. The entropy function S:X!R� makes a connection between the state
of the system and the temperature (T ), pressure (p) and chemical potentials (�i), via the equations

1
T

= @S
@U

(U ; V ;N1; : : : ; Nn)

¡p
T

= @S
@V

(U ; V ;N1; : : : ; Nn)

�i
T

= @S
@Ni

(U ; V ;N1; : : : ; Nn)

Thus, although entropy cannot be measured directly, it plays a crucial role in connecting properties
of a chemical system. We call these quantities 1

T
, ¡ p

T
, and �i

T
the conjugate quantities to the

variables U ; V ;Ni.

Example 10.3. The state space of a purely thermal system (like a tank of water that can be
heated or cooled, but the volume or amount of water cannot change) is X =R>0. If the system
has a constant heat capacity, i.e.

U =CT

where U is the energy, C is the heat capacity, and T is the temperature, then the entropy function
that models this is

S(U)=C logU

as then the equation
1
T
= @S

@U
implies

U =CT

Example 10.4. Often in thermodynamics, it is useful to consider a system with an arbitrarily
large heat capacity, a system with a heat capacity so large that the amounts of heat transfered
over the course of the relevant process does not change the temperature of the system appreciably.
We call this system �the heat bath at temperature T �, and it has state spaceR and entropy function

S(�U)=T �U

where �U is the change in energy from some arbitrary starting point. We use the change in energy
rather than the total energy, because the totally energy is effectively infinite (this is captured in
the fact that �U can be arbitrarily negative).

Example 10.5. Statistical mechanics can be modeled using a state space X =P(
), the convex
space of probability distributions on a finite set 
, which is the same convex space as the simplex
in Example 9.4. Then we use Shannon entropy as the entropy function, i.e.

S(p)=¡
X
i=1

n

pi log pi

As is normal, we use the convention that 0 log 0=0.
The conjugate quantities to the pi are

@S

@pi
=¡log pi¡ 1
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This quantity ¡log pi is called the surprisal of the probability distribution at i, which roughly
measures how unlikely the event i is.

Example 10.6. We can also model quantum systems as thermostatic systems. For simplicity, we
consider a finite-dimensional Hilbert space H =Cn with orthonormal basis e1; : : : ; en. A mixed
state on H is a matrix �:H!H, with non-negative real eigenvalues p1;: : : ; pn such that p1+ � � �+
pn=1. The set of mixed states forms a convex space, which we call X . We then define S:X!R� by

S(�)=¡
X
i=1

n

pi log pi

where p1; : : : ; pn are again the eigenvalues of �.

We now move on to how one composes thermostatic systems.

10.2. Composition of thermostatic systems
We compose thermostatic systems using the same operad-theoretic machinery that we used for
port-Hamiltonian systems. The �interface� for a thermostatic system is the state space, so the set
of thermostatic systems on a state space is simply the set of entropy functions.

The general idea for how to compose thermostatic systems is the following. Given thermostatic
systems (X1; S1); : : : ; (Xn; Sn), we first form the thermostatic system (X1� �� � �Xn; S1+ � � �+Sn).
This represents the �independent composition� of the n systems. Then, to model interactions
between the systems, we find a convex space Y which models the quantities conserved in the
interaction (like total energy, total volume, etc.). We think of Y as a �coarser description� of the
whole system. Then, we take a convex relation R� (X1� � � � �Xn)� Y that expresses when a
state (x1; : : : ; xn)2X1� � � � �Xn is compatible with the coarser description y 2 Y . For instance,
it could be compatible only when the conserved quantities in (x1; : : : ; xn) add up to the totals in
y. Finally, we make a thermostatic system on state space Y via the concave map

S(y)= sup
((x1; : : : ;xn);y)2R

S1(x1)+ � � �+Sn(xn)

This process of independent composition followed using a relation to make a system on a
new interface is identical on an abstract level to the process of forming a new port-Hamiltonian
system, and thus is formalized in the same way: by making a lax symmetric monoidal functor and
then turning that into an operad algebra. This time however, we do not need higher operads; this
is simply be a lax symmetric monoidal functor into Set rather than a lax symmetric monoidal
pseudofunctor into Cat.

Construction 10.7. We construct a functor Ent: ConvRel! Set in the following manner. We
define Ent on objects by

Ent(X)= fS:X!R� jS is concaveg

We then define Ent on morphisms R:X9Y by

Ent(R)(S 2Ent(X))= (y 2Y ) 7! sup
(x;y)2R

S(x)

We also use R�S to refer to Ent(R)(S). Intuitively, R�S(y) is the maximum entropy of a state
compatible with y.

Construction 10.8. We then define the laxator

�X;Y :Ent(X)�Ent(Y )!Ent(X �Y )

by sending S 2Ent(X), T 2Ent(Y ) to S+T 2X �Y, where

(S+T )(x; y)=S(x)+T (y)

and the unitor

�: 1!Ent(1)
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by sending the unique element of 1 to the zero function 1!R� . That this is a valid lax symmetric
monoidal functor is proven in Baez, Lynch, and Moeller [ 1, Theorem 33].

Theorem 10.9. Op(Ent) is an operad algebra of CR=Op(ConvRel), where

Op(Ent)(X)= fS:X!R� jS is concaveg

and the action of a relation

R2CR(X1; : : : ; Xn;Y )

on entropy functions S1:X1!R� ; : : : ; Sn:Xn!R� is given by

S(y)= sup
(x1; : : : ;xn;y)2R

S1(x1)+ � � �+Sn(xn)

Proof. This follows from Corollary 7.17 applied to the symmetric monoidal functor (Ent; �; �). �

We now give some examples of composition using this operad algebra.

Example 10.10. In this example, we formalize the story about the pie and ice cream given in
Section 1.3. We start with two thermostatic systems (X1; S1) and (X2; S2) with Xi=R>0 and

Si(U)=Ci logU

where Ci is the heat capacity of system i. We describe this in terms of the total energy, which takes
values in Y =R>0. The relation modeling the conservation of total energy is R� (X1�X2)� Y
defined by

R= f((U1; U2); U) jU =U1+U2g

This relation is an operation in Op(ConvRel)(X1; X2; Y ). We apply this operation to (S1; S2) 2
Ent(X1)�Ent(X2) in the following way. First, we apply the laxator to get

S1+S22Ent(X1�X2)

Second, we apply the functor Ent to R to get

R�(S1+S2)(U)= sup
((U1;U2);U)2R

S1(U1)+S2(U2)= sup
U1+U2=U

S1(U1)+S2(U2)

which is a concave function on Y , i.e. an element of Ent(Y ). As discussed in Section 1.3, the
supremum over this constraint corresponds to a state where the temperatures of the pie and ice
cream have equilibriated. Morever, the explicit form of the entropy function R�(S1+S2) is

R�(S1+S2)(U)= (C1+C2) logU +K

for some constant K, so the system (Y ;R�(S1+S2)) acts as a system with constant heat capacity
C1+C2.

Heat Exchanger

Molecule
Exchanger 1

Volume Exchanger

Molecule
Exchanger 2

Movable Divider
(permeable to heat)

Figure 10.1. A setup where two gases can equilibriate temperature and pressure.
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Example 10.11. We can generalize beyond the previous example to not just equilibriating temper-
ature, but also equlibriating pressure. Consider a system of two ideal gases, as pictured in Figure
10.1. This is a composition of two systems (X1; S1), (X2; S2), which are each as in Example 10.2
but only one type of molecule. That is, Xi=R>0

3 with coordinates (Ui; Vi; Ni) of energy, volume,
and particle number, and the entropy functions are empirically derived from measurement of the
quantities

1
Ti

= @Si
@Ui

(Ui; Vi; Ni)

¡pi
Ti

= @Si
@Vi

(Ui; Vi; Ni)

�i
T

= @Si
@Ni

(Ui; Vi; Ni)

Then the quantities that are conserved in the interaction of the two systems with each other are
U1+U2, V1+V2, N1, and N2, as the two systems can exchange heat and volume, but not particles.
Thus, we coarse grain the system in terms of Y =R>0

4 with coordinates (U ; V ;N1ext; N2ext), using
the relation defined by the equations

U1+U2 = U

V1+V2 = V

N1 = N1
ext

N2 = N2
ext

When we maximize entropy with respect to these constraints, by similar logic as before we end up
equilibriating the conjugate variables to the quanties that are allowed to flow between systems.
That is, we allow heat to flow between systems, so we end up with

1
T1
= 1
T2

at equilibrium. We also allow volume to flow between systems (by moving the divider), so we end
up with

¡p1
T1
=¡p2

T2

at equilibrium. Thus, the temperature and the pressure equilibriate.

Example 10.12. Suppose that we take a chemical system (X1 =Rm+2; S1) and let it freely
exchange heat with a heat bath

¡
X2=R; S2(U)=

1

T
U
�
at fixed temperature T (see Example 10.4),

assuming that the total energy was fixed to 0 (i.e., all of the energy in the system came out of the
heat bath originally). The result is a system expressed in terms of volume and particle numbers as

S(V ;N1; : : : ; Nm)= sup
U+U 0=0

S1(U ; V ;N1; : : : ; Nm)+
1
T
U 0= sup

U

S1(U ; V ;N1; : : : ; Nm)¡
1
T
U

This is the Legendre transform of S1, and is known as �Helmholtz free entropy�. This quantity is
used to investigate systems at constant temperature; our formalism shows that this is a natural
consequence of composing a system with a heat bath.

Note that we end up describing the system in terms of Y =Rm+1, which is not a complete
description of conserved quantities because we also have energy conserved. But because we are
dealing with a heat bath, it matters not the total energy as long as it is fixed, so we might as well
just assume the total energy is 0 and drop an unnecessary variable from Y .

We can generalize the previous example to fix both the pressure and temperature of a system
by attaching two thermostatic systems

¡
X2=R; S2(U)=

1

T
U
�
and

¡
X3=R; S3(V )=

¡p
T
V
�
.

10.3. Chemical reactions
In this section we model a question that is frequently asked by chemists: what will the equilibrium
of a reaction (or collection of reactions) be, at a certain temperature and pressure? To pose this
question, we must start by giving the data of a collection of reactions in a mathematical format.
To get a sense for what this data must look like, we give some examples of reactions.
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Example 10.13. Water is formed by reacting hydrogen and oxygen.

2H2+O2
 2H2O

Example 10.14. The Haber process reacts atmospheric nitrogen and hydrogen to get ammonia:

N2+3H2
 2NH3

In general, to specify a reaction, we first give a collection of types of molecules (which we call
species) present in the reaction, which we call �. Then we have a function i: �!N which counts
how many times each species appears on the left hand side of the reaction, and a function o:�!N
which counts how many times each species appears on the right hand side.

Definition 10.15. A reaction is a tuple (�; i: �!N; o: �!N) where � is a finite set. If
s 2�, we call i(s) the input stoichiometric coefficient in the reaction, and o(s) the output
stoichiometric coefficient.

Example 10.16. For Example 10.13, we have �= fH2;O2;H2Og, and

i(H2) = 2
i(O2) = 1

i(H2O) = 0
o(H2) = 0
o(O2) = 0

o(H2O) = 2

Example 10.17. For Example 10.14, we have �= fN2;H2;NH3g and

i(N2) = 1
i(H2) = 3

i(NH3) = 0
o(N2) = 0
o(H2) = 0

o(H2O) = 2

In general, we might have multiple reactions sharing the same set of species.

Definition 10.18. A reaction network is a tuple (�;R;fir:�!Ngr2R;for:�!Ngr2R), where
R is the set of reactions.

Note that a reaction can be identified with a reaction network with just one reaction.
Chemists measure molecules in moles. This is not a unit, it is simply a very large number,

NA=6.0221415�1023 to be precise. Chemists will say �4 moles of hydrogen� to mean 4NAmolecules
of hydrogen.

Definition 10.19. A state of a reaction network (�; R; fir: �!Ngr2R; for: �!Ngr2R) is an
element of R>0

� .

The meaning of a state x2R>0
� is that we model some situation in the world where there are

xs moles of species s, for each s2�. Chemists also measure reaction progress in moles. When a
reaction (�; i; o) has progressed for x moles in a solution, it means that for each species s2�, i(s)x
moles of that species have been used, and o(s) x moles have been produced, for a total change of
(o(s)¡ i(s))x moles. We can represent this more succinctly with the following definition.

Definition 10.20. For a reaction (�; i; o), the stoichiometric number of a species s 2 S is
o(s)¡ i(s). The stoichiometric vector for the reaction is �2NS defined by �s=o(s)¡ i(s). If (�;
R;fir:�!Ngr2R;for:�!Ngr2R) is a reaction network, then the corresponding stoichiometric
matrix is defined by �sr= or(s)¡ ir(s).
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The use of the stoichiometric matrix is that if reaction r has progressed for �rmoles (i.e. �2RR),
then the total change in all of the species given by the matrix multiplication � �, as � is a linear
map from RR to RS.

Definition 10.21. For a reaction network (�;R;fir:�!Ngr2R;for:�!Ngr2R), the stoichio-
metric subspace Stoch�R� is defined by Stoch= im �.

Now, suppose that x: [a; b]!R>0
� represents the state over time of an experiment in which

the reactions in (S; R; firg; forg) are taking place. Then it must be true that for any t; s 2
[a; b], x(t)¡ x(s) 2 Stoch. Thus, the projection p:R>0

� !R>0
� /Stoch must be conserved, where

R>0
� /Stoch is the convex space given by quotienting R>0

� by the equivalence relation x� x0 iff
x¡ x0 2 Stoch. That is, p(x(t)) = p(x(s)) for all t; s 2 [a; b]. Moreover, if p(x) = p(x0), then it is
possible to reach x0 from x using the reactions, as there exists some � such that x¡x0= � �, so if
we run reaction r for �r moles, then we will get to x0 starting at x.

We can now apply the methods of thermostatics to investigate questions of equilibrium subject
to the constraint that the projection to R>0

� /Stoch is preserved. The typical setup that might be
considered in chemistry is the following.

We start with a thermostatic system
¡
X1=R>0

2+j�j; S1
�
, a state of which consists of a vector

(U ; V ; fNsgs2�) of energy, volume, and particle numbers (measured in moles). Reactions in a
lab typically take place under constant pressure and constant temperature, so we attach this
thermostatic system to a heat bath

¡
X2=R; S2(U)=

1

T
U
�
, and a pressure bath

¡
X3=R; S3(V )=

¡p
T
V
�
. As noted before, we describe the conserved quantities using the space Y =R>0

3 /Stoch.
Volume and energy are also conserved, but as noted in Example 10.12, because we are connecting
to heat/pressure baths, the total energy/volume can just be set to 0 and thus we do not need a
variable in Y to account for it.

More formally, the relation R between X1�X2�X3 and Y can be given as follows, using
coordinates (U ; V ;N~ ) for X1, U 0 for X2, V 0 for X3, and y for Y .

U +U 0 = 0
V +V 0 = 0
p(N~ ) = y

where p:R>0
� !Y is the projection discussed earlier. When we compute the entropy S=R�(S1+

S2+S3), we end up getting

S(y)= sup
U;V ;p(N~ )=y

S1(U ; V ;N~ )¡
1
T
U + p

T
V

The quantity

�= sup
U;V

S1(U ; V ;N~ )¡
1
T
U + p

T
V

is known as Gibbs free entropy or the Planck potential, and maximizing it over all N~ compatible
with y is known to give the equilibrium of a collection of reactions; for more information on this
see Callen [79, Section 6-7], where � is referred to as a Massieu function. Thus, we see that our
framework rederives chemical equilibria.

10.4. Statistical mechanics
Statistical mechanics is the study of systems in physics with many orders of magnitude more
degrees of freedom than would be feasible to model explicitly. Fortunately, it can be productive
to model these systems using probability and statistics, as there are so many degrees of freedom
that laws of large numbers apply very strongly.

Statistical mechanics is a very broad subject. Here we give just a brief taste of how thermostatics
and statistical mechanics can intersect. It is well-known that the canonical distribution, a common
distribution for modeling systems within statistical mechanics, can be derived by maximizing
entropy. We give an overview of why this is so, and how this fits into the thermostatic framework.
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We start with a probabilistic system, as in Example 10.5. That is, we have a state space
X1= P (
), for 
 a finite set, where P (
) is the convex space of probability distributions on 
,
and the entropy function is Shannon entropy:

S(p)=¡
X
!2


p(!) log p(!)

We then describe this system in terms of the expected values of a macroscale observable. Specif-
ically, we assume that there is some function H: 
!R that gives the energy of each ! 2
, and
that measuring the energy of a general state p2P (
) gives

hH ip=
X
!2


H(!) p(!)

Now, suppose that we were to measure the energy of the system U . The mathematician E.T.
Jaynes would argue that the only reasonable choice of probability distribution that expresses our
knowledge of the system is the probability distribution p that maximizes S(p), subject to the
constraint that hH ip= U ; see Jaynes [18, Chapter 11] for more details on this. There are also
theorems in probability that state that under some reasonable assumptions, the �most likely�
probability distribution producing our outcome is in fact this entropy-maximizing distribution; see
Cover and Thomas [80, Section 11.4].

We can model this situation via the relation R between X = P (
) and Y =R given by the
graph of the function p 7! hH ip. We get an entropy function

R�S(U)= sup
p2P (
);hH ip=U

S(p)

This supremum in fact has a unique maximizer, which we calculate by means of Lagrange mul-
tipliers. We have two constraints, one of which comes from the fact that p must be a probability
distribution X

!2

p(!) = 1

and the other which comes from our observation U , i.e.X
!2


H(!) p(!) = U

We will thus maximize the quantity

S(p)¡ �(hH ip)¡ 
 X
!2


p(w)
!
=¡

X
!2


p(w) log(p(!))+ �H(!) p(!)+  p(!)

We do this by setting the derivatives with respect to each p(!) to 0. We then get

1+ log(p(!))+ �H(!)+ =0

Thus

p(!)= e¡1¡�H(!)¡

We normalize this to a probability distribution by tweaking  so that

e¡1¡=
X
!2


e¡�H(!)

This is called the partition function and is typically called Z(�). We then have a family of
probability distributions given by

p�(!)=
e¡�H(!)

Z(�)

This is called the canonical distribution. We can now tweak � until we find one such that
hH ip� = U . The partition function and the canonical distribution are the basic ingredients in
statistical mechanics [81].
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The end result here is that the derivation of the canonical distribution fits into the same
framework as macroscale thermostatics; that of the operad algebra of thermostatic systems. It is
widely appreciated that the maximizing entropy subject to constraints is an important procedure
in science; we have shown here that this procedure can be captured within a formal system general
enough to handle a wide range of applications, and we hope that this will lay the groundwork for
further formalization of thermodynamics and statistical mechanics.
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