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Introduction 2/26

Guiding question: how are energy and entropy related in macroscopic systems?

What you should look for in this talk:

� Mathematical theories of thermodynamics

� The tension between entropy and energy: why is thermodynamics confusing for a mathe-
matician?

� What threads to pull on to study this topic further

� Future directions for the formalization of open thermodynamical systems using category
theory



Physics in the 21st Century 3/26

Today, the most exciting physics is not fundamental physics.

�John Baez [1]

� 20th century: fundamental physics

� Transistor (quantum mechanics) enables information revolution

� Hydrogen bomb (nuclear physics) changes warfare forever

� GPS (general relativity) obsoletes asking for directions

� 21st century: scale up to complex systems

� Need to do ecology well in order to save planet

� Need to engineer infrastructure to feed, house, and transport 8 billion people

� Need to understand human body to cure diseases



What are complex systems? 4/26

Two ways that systems can be complex:

1. Systems can exhibit emergent behavior from simple rules.

2. Systems can be very complicated to specify.

Type 1 (Rule 30, [2]) Type 2 (Solar radiation model, [3])

Figure 1. Type 1 vs. Type 2 complexity



How to deal with complexity 5/26

We need to deal with both types of complexity.

Dealing with type 1 complexity means discovering scientific properties of systems, to enable new
predictions

Example 1. Phase transition in lattice models. [4]

Dealing with type 2 complexity means building formal structures to model systems, to enable
new abstractions

Example 2. Define a resource sharing machine [5] on an interface Y to be

� A space X

� A vector field v:X!TX

� A resource-exposing map e:X!Y



Why thermodynamics? 6/26

Thermodynamics is a good test case for both types of complexity.

� Thermodynamics studies emergent behavior of systems with many degrees of freedom.

� Thermodynamics is used widely within engineering disciplines to model complicated
macroscale behavior.

Also:

Every mathematician knows it is impossible to understand an elementary course
in thermodynamics.

� Vladimir Arnold [6]

Challenge accepted!
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1. Energy in the driver's seat (Hamiltonian mechanics)

2. Entropy in the driver's seat (Entropy maximization)

3. Nobody in the driver's seat (Quasi-static processes, contact geometry)

4. Open systems (linear irreversible thermodynamics, port-Hamiltonian systems)

5. Entropy and Energy driving together (Exergy, GENERIC)



Energy in the driver's seat 8/26

Hamiltonian mechanics in 3 easy steps: [7]

1. Find coordinates (q; p) for your system

2. Find total energy H(q; p)

3. Solve diff eq.

q_ = @H
@p

p_ = ¡@H
@q



Example: mass and spring 9/26

k

F

m

v

Figure 2. A mass on a spring

1. Coordinates: q is position, p is momentum

2. Energy

H(q; p)= 1
2m

p2+ k
2
q2

3. Differential equations:

q_ = @H

@p
= p

m

p_ = ¡@H
@q

=¡k q

More familiar as x_ = v, p_ =F =¡k x.
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Proposition 3. Any solution of Hamilton's equations automatically conservers energy.

Proof.

d
dt
H(q(t); p(t))= hdH(p(t); q(t)); (p_(t); q_(t))i= @H

@q
@H
@p
¡ @H
@p

@H
@q

=0 �

�Energy is all you need�



The mathematical physics of Hamiltonian mechanics 11/26

A Poisson manifold X has precisely the structure necessary in order to make a vector field vH:
X!TX out of any scalar function H:X!R such that

rH � vH=0

This implies that the dynamics of vH conserve energy!

In quantum mechanics, the Hamiltonian is a self-adjoint operator on a Hilbert space, and we
replace Hamilton's equations by the Schrodinger equation

d 
dt

=¡ i
h
H 

These dynamics also conserve energy.

Conclusion: energy-driven systems have nice mathematics!



Entropy in the driver's seat 12/26

Equilibrium points of thermodynamical systems are found at maxima of the entropy with respect
to constraints.

Example 4. Pie and icecream (continued on next slide)

Figure 3. A hot pie and cold ice cream in an insulated container

This perspective formalized in [8].



Melting icecream with entropy maximization 13/26

� Model pie and ice cream as two thermal systems with heat capacities C1; C2

CiTi=Ui

� Entropy of each system given in terms of internal energies U1; U2 as

Si(Ui)=Ci logUi

� Maximize S1(U1)+S2(U2) subject to U1+U2=Utot, where Utot is fixed, we get

Stot(Utot)= max
U1+U2=Utot

S1(U1)+S2(U2)= (C1+C2) logUtot+ const

� The overall system has the entropy function of a thermal system with heat capacity C1+C2.

� Entropy maximization predicts temperature equalization between the two systems at equi-
librium, where temperature is defined by

1
T
= @S
@U



Canonical ensemble via entropy maximization 14/26

� Heat bath at temperature T :

Sbath(U)=
U
T

� Probabilistic system of microstates i:

Ssh(p)=¡
X
i

pi log pi

� Maximize Ssh(p) + Sbath(U) subject to condition that average energy is taken out of the
heat bath. X

i

Hi pi+U =0

� Result is canonical ensemble

pi=
e¡

1
T
HiP

i
e¡

1
T
Hi

.



Nobody in the driver's seat: quasi-static processes 15/26

� Quasi-static processes investigate paths of equilibria.

� How can a system have multiple equilibria?

� Equilibria depends on external conditions, external forces move system between equilibria

� First law:

dU = �Q+ �W

� For an ideal gas:

dU =TdS ¡ pdV

� What is this mathematically?



Contact geometry 16/26

� A 1-form ! is a section of the cotangent bundle T �X

� Can be integrated along a path 
: [0; 1]!X via

Z



!=
Z
0

1

!
(t)(
 0(t)) dt

� A scalar function f :X!R induces a gradient 1-form df

� 1-forms can be multiplied by scalar functions

� Let X =R5, with (U ; S; V ; T ; p) the coordinate functions

� �=dU ¡T dS+ p dV is a 1-form

� A material is described by a 2-dimensional surface of equilibria points S �X such that �
restricted to the tangent bundle TS �TX is zero.

� Moving between equilibria is energy-conserving.

� Materials as surfaces resolves question of �what is a function of what?�



Thermodynamic cycles 17/26

Definition 5. Thermodynamic cycles are closed paths in the surface that defines a material.

Example 6. Carnot cycle [9]

Figure 4. Two different projections of a single closed path in R5



Quasi-static processes are weird 18/26

� Temperature, volume and pressure can be measured, energy and entropy cannot

� Pressure and temperature are intensive variables, energy, entropy, and volume are all exten-
sive

� Energy and volume are properties of �microstates� (in the statistical mechanics interpretation)
while pressure, temperature, and entropy are only properties of �macrostates�

� All quantities have different units

� It's weird to have these very different quantities as coordinates for a manifold.

� Energy and entropy are functions of state in both Hamiltonian mechanics and entropy-
maximization, but here they are part of the coordinates of the state.

� So how does thermodynamics relate to dynamical systems?



Linear Irreversible Thermodynamics 19/26

� Non-equilibrium thermodynamics sounds scary

� Actually some parts are very familiar

� The simplest type of non-equilibrium thermodynamics is linear irreversible [10]

� Resistors

� Diffusion

� Friction

� Newton's law of cooling

� Described (mutatis mutandis) by

I21=
1
R
(V2¡V1)

� For resistors, diffusion, or friction the excess energy becomes heat

� For cooling, transfer of heat from hot to cold increases entropy

� Resistor networks studied in [11]



Port-Hamiltonian systems 20/26

How can we construct a circuit with a resistor, capacitor, and inductor via composition?

Figure 5. An RLC Circuit

End result should be damped oscillator.

q_ = �
L

�_ = q

C
¡ �R

L



Effort and Flow 21/26

Port-Hamiltonian systems are open systems whose interface consists of paired effort and flow

Domain Effort Flow
Electrical Voltage Current

Linear Mechanical Force Velocity
Rotational Mechanical Torque Angular Velocity

Hydraulic Pressure Volume flow
Thermal Temperature Entropy flow
Chemical Chemical potential Mass flow

Table 1. Effort and flow in various domains



Generalized capacitors 22/26

Here are capacitors in different domains:

System State variable Constant Effort Flow

Capacitor Charge (q) Capacitance (C) Voltage (V = 1

C
q) Current (I = q_)

Lin. Spring Length (x) Compliance (C) Force (F = 1

C
x) Velocity (v=x_

Coil Spring Rotation (�) Ang. Compliance (C) Torque (� = 1

C
�) Ang. vel. (!= �

Inductor Magnetix flux (�B) Inductance (L) Current (I = 1

L
�B) Voltage (V =�_B

Particle Momentum (p) Mass (m) Velocity
¡
v= 1

m
p
�

Force (F = p_)

Gyroscope Ang. mmtm. (L) Moment of Inertia (I) Ang. vel. (!= 1

I
L) Torque (� =L_ )

Table 2. Systems analogous to capacitors

Port-Hamiltonian systems are built by composing generalized capacitors and generalized resistors
in a bond-graph like syntax. [12]

Category-theory based composition for just �generalized capacitors� in master's thesis [13]



Exergy 23/26

� Traditional port-Hamiltonian systems have �dissiapative components� (i.e. resistors), but
don't consider entropy explicitly.

� One way to work with energy and entropy is to combine them into an �exergy� potential:

B=U + p V ¡TS

Physically, this is defined to be �the energy that can be extracted from the system to do
useful work�

� In [14], Exergetic Port-Hamiltonian Systems are developed

� Downside is that you need reference pressure/temperature/chemical potential/voltage etc.



GENERIC 24/26

� Another way is the �two-potential� approach, called GENERIC (General Equation for Non-
Equilibrium Reversible-Irreversible Coupling)

� State space X with E;S:X!R. Then

dx
dt

=L(x) �E
�x

+M(x) �S
�x

where L(x) is a �Poisson matrix� and M(x) is a �friction matrix�. When M(x)= 0, this is
just Hamilton's equations for a Poisson manifold.

� Here, finally, entropy and energy are both driving!

� A resistor here is modeled as energy conserving; it converts electrical energy into heat energy

� I don't yet know how to make the �open systems� version of GENERIC



Recap 25/26

� In classical mechanics and quantum mechanics, everything is �driven by energy�, via Hamilton's
and Schrodinger's equations. Moreover, systems are typically closed/isolated.

� In equilibrium thermodynamics/statistical mechanics, everything is �driven� by entropy max-
imization, and often �open� in the sense that they are connected to a heat bath.

� Three approaches to irreversibility in non-equilibrium thermodynamics:

� Dissiapative structures (i.e. linear irreversible thermodynamics), just forget about the
energy which dissiapates

� Exergy-based systems, which account for what portion of their energy is useful, but rely
on reference intensive quantities

� GENERIC systems, which use a double-potential system to model dynamics due to energy
and due to entropy simultaneously

� Currently, with category theory I can compose

� Entropy maximizers

� Reversible port-Hamiltonian systems

� Lots more work to do!
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